Skip to main content

Cytological Methods for Detecting Chemical Mutagens

  • Chapter

Part of the book series: Chemical Mutagens

Abstract

Chemical agents that induce mutations at specific loci in a eukaryote genome invariably also produce cytologically recognizable chromosome damage expressed as structural changes or “aberrations.” Moreover, many, and perhaps the majority, of the mutations induced in mammalian cell systems and detected through an alteration or loss of a given protein are associated with a visible cytological change involving the locus in question. In considering the possible action of chemical mutagens on man, it is important therefore to realize that spontaneous mutations in the form of chromosome aberrations(1)comprise a major part of man’s genetic burden; that certain of these aberrations are transmitted from generation to generation; and, as revealed from studies on laboratory animals, that the incidence of such aberrations must be increased on exposure of germ cells to mutagens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Jacobs, M. Melville, S. Ratcliffe, A. J. Keay, and J. Syme, A cytogenetic survey of 11,680 newborn infantsAnn. Hum. Genet. 37, 359–376 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. H. J. Evans, Chromosome aberrations induced by ionizing radiationsInt. Rev. Cytol. 13, 221–321 (1962).

    CAS  Google Scholar 

  3. H. J. Evans, Effects of ionizing radiation on mammalian chromosomes, in “Chromosomes and Cancer” (James German, ed.), pp. 191–237, John Wiley & Sons, New York (1974).

    Google Scholar 

  4. S. Wolff, Radiation genetics, in “Mechanisms in Radiobiology” (M. Errera and A. Forssberg, eds.). Vol. 1, pp. 419–475, Academic Press, Inc., New York (1961).

    Google Scholar 

  5. S. Wolff, Radiation genetics, in “Annual Review of Genetics” (H. L. Roman, L. S. Sandler, and G. S. Stent, eds.) Vol. 1, pp. 221–244, Annual Reviews Inc., Palo Alto, California (1967).

    Google Scholar 

  6. B. A. Kihlman, “Actions of chemicals on dividing cells,” Prentice-Hall Inc., New Jersey (1966).

    Google Scholar 

  7. H. J. Evans and D. Scott, Influence of DNA synthesis on the production of chromatid aberrations by X-rays and maleic hydrazideGenetics 49, 17–38 (1964).

    CAS  PubMed  Google Scholar 

  8. H. J. Evans and D. Scott, The induction of chromosome aberrations by nitrogen mustard and its dependence on DNA synthesisProc. Roy. Soc. B 173, 491–512 (1969).

    Article  CAS  Google Scholar 

  9. K. E. Buckton and H. J. Evans, Methods for the analysis of human chromosome aberrations, WHO Publication, Geneva (1973).

    Google Scholar 

  10. D. E. Lea, “Actions of radiations on living cells,” Cambridge University Press (1955).

    Google Scholar 

  11. H. J. Evans, Repair and recovery from chromosome damage after fractionated X-ray dosage, in “Genetical Aspects of Radiosensitivity: Mechanisms of Repair,” pp. 31–48, International Atomic Energy Agency, Vienna (1966).

    Google Scholar 

  12. M. A. Bender, J. S. Bedford, and J. B. Mitchell, Mechanisms of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible lightMutation Res. 20, 403–416 (1973).

    Article  CAS  PubMed  Google Scholar 

  13. J. A. Heddle and D. J. Bodycote, On the formation of chromosomal aberrationsMutat. Res. 9, 117–126 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. H. J. Evans, Population cytogenetics and environmental factors, in “Human Population Cytogenetics” (P. A. Jacobs, W. Price, and P. Law, eds.) Pfizer Medical Monographs 5, pp. 192–216, Edinburgh University Press (1970).

    Google Scholar 

  15. J. H. Taylor, Sister chromatid exchanges in tritium-labeled chromosomes. Genetics 43, 515–529 (1958).

    CAS  PubMed  Google Scholar 

  16. J. G. Brewen and W. J. Peacock, The effect of tritiated thymidine on sister-chromatid exchange in a ring chromosomeMutat. Res.7, 433–440 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. D. A. Gibson and D. M. Prescott, Induction of sister chromatid exchanges in chromosomes of rat kangaroo cells by tritium incorporated into DNAExp. Cell Res. 74, 397–402 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. A. F. Zakharov and N. A. Egolina, Differential spiralization along mammalian mitotic chromosomes. I. BUdR-revealed differentiation in Chinese hamster chromosomesChromosoma 38, 341–365 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. S. A. Latt, Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomesProc. Nat. Acad. Sci. USA 70, 3395–3399 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. P. Perry and S. Wolff, New Giemsa method for the differential staining of sister chromatidsNature London 251, 156–158 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. S. Wolff and P. Perry, Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiographyChromosoma 48, 341–353 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. S. A. Latt, Sister chromatid exchanges, indices of human chromosome damage and repair: detection by fluorescence and induction by mitomycin CProc. Nat. Acad. Sci. USA 71, 3162–3166 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. P. Perry and H.J. Evans, Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258, 121–125 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. A. D. Conger, The fate of metaphase aberrationsRadiat. Bot. 5, 81–96 (1965).

    Article  Google Scholar 

  25. A. D. Conger and H. J. Curtis, Abnormal anaphases in regenerating mouse liversRadiat. Res. 33, 150–161 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. J. A. Heddle, A rapidin vivotest for chromosomal damageMutat. Res. 18, 187–190 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. W. Schmid, D. T. Arakaki, N. A. Breslau, and J. C. Culbertson, Chemical mutagenesis. The Chinese hamster bone marrow as anin vivotest system. 1. Cytogenetic results on basic aspects of the methodology obtained with alkylating agentsHumangenetik 11, 103–118 (1971).

    Google Scholar 

  28. M. Von Ledebur and W. Schmid, The micronucleus test. Methodological aspectsMutat. Res. 19, 109–117 (1973).

    Article  Google Scholar 

  29. W. Schmid, The micronucleus test. Mutation Res. 31, 9–15, (1975a).

    Article  CAS  PubMed  Google Scholar 

  30. W. Schmid, The micronucleus test for cytogenetic analysis, in “Chemical Mutagens” (A. Hollaender, ed.), Vol. 4, pp. 31–53, Plenum Press, New York (1976).

    Google Scholar 

  31. H. J. Evans and M. L. O’Riordan, Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen testsMutat. Res. 31, 135–148 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. H. J. Evans, W. M. Court Brown, and A. McLean (eds.), “Human Radiation Cytogenetics,” sss North-Holland, Amsterdam (1967).

    Google Scholar 

  33. R. J. Preston, J. G. Brewen, and N. Gengozian, Persistence of radiation-induced chromosome aberrations in marmoset and manRadiat. Res. 60, 516–524 (1974).

    Article  CAS  PubMed  Google Scholar 

  34. Report of UN Scientific Committee on Effects of Atomic Radiation, General Assembly, 24th Session, Suppl. 13 (A/7613), pp. 98–155, United Nations, New York (1969).

    Google Scholar 

  35. C. Stevenson and C. Patel, Effects of chlorambucil on human chromosomesMutat. Res. 18, 333–351 (1973).

    Article  CAS  PubMed  Google Scholar 

  36. G. Pollini and R. Colombi, II danno cromosomico dei linfociti nell’emopatia benzenicaMed. Lavoro 55, 641–654 (1964).

    CAS  Google Scholar 

  37. I. M. Tough and W. M. Court Brown, Chromosome aberrations and exposure to ambient benzene. Lancet i, 684.

    Google Scholar 

  38. I. M. Tough, P. G. Smith, W. M. Court Brown, and D. G. Harnden, Chromosome studies on workers exposed to atmospheric benzeneEur. J. Cancer 6, 49–55 (1970).

    Article  CAS  PubMed  Google Scholar 

  39. M. N. Rabello, W. Becak, W. F. de Almeida, P. Pigati, M. T. Ungaro, T. Murata, and C. A. B. Pereira, Cytogenetic study on individuals occupationally exposed to DDTMutat. Res. 28, 449–454 (1975).

    Article  Google Scholar 

  40. G. Deknudt, A. Leonard, and B. Ivanov, Chromosome aberrations observed in male workers occupationally exposed to leadEnviron. Physiol. Biochem. 3, 132–138 (1973).

    Google Scholar 

  41. M. Bauchinger, E. Schmid, and D. Schmidt, Chromosomen-analyse bei Verkehrspolizisten mit Erhöhter BleilastMutat. Res. 16, 407–412 (1972).

    Article  CAS  PubMed  Google Scholar 

  42. M. L. O’Riordan and H. J. Evans, Absence of significant chromosome damage in males occupationally exposed to lead. Nature 247, 50–53 (1974).

    Article  PubMed  Google Scholar 

  43. Y. Shiraishi and T. H. Yosida, Chromosomal abnormalities in cultured leucocyte cells from Itai Itai disease patientsProc. Jpn Acad. 48, 248–251 (1972).

    Google Scholar 

  44. G. Deknudt and A. Leonard, personal communication (1975).

    Google Scholar 

  45. M. A. Pilinskya, Chromosome aberrations in persons in contact with ziram under industrial conditionsGenetika 6, 157 (1970).

    Google Scholar 

  46. W. W. Nichols, R. C. Miller, W. Heneen, C. Bradt, L. Hollister, and S. Kanter, Cytogenetic studies on human subjects receiving marihuana and A-9-tetrahydrocannabinolMutat. Res. 26, 413–417 (1974).

    Article  CAS  PubMed  Google Scholar 

  47. C. E. Dick, M. L. Schniepp, R. C. Sonders, and R. G. Wiegand, Cyclamate and cyclohexylamine: lack of effect on the chromosomes of man and ratsin vivo, Mutat. Res. 26, 199–203 (1974).

    Article  CAS  PubMed  Google Scholar 

  48. J. Yoder, M. Watson, and W. W. Benson, Lymphocyte chromosome analysis of agricultural workers during extensive occupational exposure to pesticidesMutat. Res. 21, 335–340 (1973).

    Article  CAS  PubMed  Google Scholar 

  49. Ducatman, K. Hirschhorn, and I. J. Selikoff, Vinyl chloride exposure and human chromosome aberrations Mutat. Res. 31, 163–168 (1975).

    Google Scholar 

  50. J. H. Turner and D. L. Hutchinson, Cyclohexylamine mutagenicity: anin vivoevaluation utilizing fetal lambsMutat. Res. 26, 407–412 (1974).

    Article  CAS  PubMed  Google Scholar 

  51. B. Beck and G. Obe, The human leukocyte test system. IL Different sensitivities of subpopulations to a chemical mutagenMutat. Res. 24, 395–398 (1973).

    Article  Google Scholar 

  52. G. Buchinger, Mutagenicity experiments with mice and human cell cultures: treatment with an acridine derivative (trypaflavin), in “Chemical Mutagenesis in Mammals and Man” (F. Vogel and G. Röhrborn, eds.), pp. 350–366, Springer-Verlag, Heidelberg (1970).

    Chapter  Google Scholar 

  53. D. G. Harnden, Skin culture and solid tumor technique in “Human Chromosome Methodology,” 2nd ed. (J. J. Yunis, ed.), pp. 167–184, Academic Press, New York (1974).

    Chapter  Google Scholar 

  54. U. Wolff, Cell cultures from tissue expiants in “Methods in Human Cytogenetics” (H. G. Schwarzacher, U. Wolf, and E. Passarge, eds.), pp. 39–58, Springer-Verlag, Berlin (1974).

    Google Scholar 

  55. P. R. Glade, J. A. Kasel, H. L. Moses, J. Whang-Peng, P. F. Hoffman, J. K. Kaumermeyer, and L. N. Chessin, Infectious mononucleosis: continuous suspension culture of peripheral blood leukocytes. Nature, 217, 564–565 (1968).

    Article  CAS  PubMed  Google Scholar 

  56. C. M. Steel and E. Edmond, Human lymphoblastoid cell lines. I. Culture methods and examination for Epstein-Barr virus. Nat. Cancer Inst. 47, 1193–1202 (1971).

    CAS  Google Scholar 

  57. C. M. Steel, Human lymphoblastoid cell lines. III. Cocultivation technique for establishment of new lines. Nat. Cancer Inst. 48, 623–628 (1972).

    CAS  Google Scholar 

  58. E. Robbins and P. I. Marcus, Mitotically synchronized mammalian cells: a simple method for obtaining large populations. Science 144, 1152–1153 (1964).

    Article  CAS  PubMed  Google Scholar 

  59. K. Ohama and T. Kadotani, Cytologic effects of Bleomycin on cultured human leukocytes, Jpn. J. Hum. Genet. 14, 293–297 (1970).

    Google Scholar 

  60. C. Promchainant, Cytogenetic effect of Bleomycin on human leukocytesin vitro, Mutat. Res. 28, 107–112 (1975).

    Article  CAS  Google Scholar 

  61. R. S. Bornstein, D. A. Hungerford, G. Haller, P. F. Engstrom, and J. W. Yarbro, Cytogenetic effects of Bleomycin therapy in man. Cancer Res. 31, 2004–2007 (1971).

    CAS  PubMed  Google Scholar 

  62. J. G. Brewen, F. G. Pearson, K. P. Jones, and H. E. Luippold, Cytogenetic effects of cyclohexylamine and N-OH-cyclohexylamine on human leukocytes and Chinese hamster bone marrow. Nature New Biol. 230, 15–16 (1971).

    Article  CAS  PubMed  Google Scholar 

  63. Paris Conference (1971): Standardization in Human Cytogenetics, “Birth Defects, Original Articel Series,” Vol. VIII, No. 7, The National Foundation—March of Dimes, New York (1972).

    Google Scholar 

  64. M. Bobrow, K. Madan, and P. L. Pearson, Staining of some specific regions of human chromosomes, particularly the secondary constriction of No. 9Nature New Biol. 238, 122–124 (1972).

    Article  CAS  PubMed  Google Scholar 

  65. J. R. Gosden, A. R. Mitchell, R. A. Buckland, R. P. Clayton, and H. J. Evans, The location of four human satellite DNAs on human chromosomesExp. Cell Res. 92, 148–158 (1975).

    Google Scholar 

  66. S. I. Matsui and M. Sasaki, Differential staining of nucleolus organisers in mammalian chromosomes. Nature, 246, 148–150 (1973).

    Article  CAS  PubMed  Google Scholar 

  67. B. Dutrillaux, Nouveau systeme de marquage chromosomique: Les bandes TChromosoma 41, 395–402 (1973).

    Article  CAS  PubMed  Google Scholar 

  68. T. Caspersson, G. Limakka, and L. Zech, 24 fluorescence patterns of human metaphase chromosomes—distinguishing characters and variabilityHereditas 67, 89–102 (1971).

    Article  Google Scholar 

  69. H. J. Evans, K. E. Buckton, and A. T. Sumner, Cytological mapping of human chromosomes: results obtained with quinacrine fluorescence and the acetic-saline-giemsa techniques Chromosoma 35, 310–325 (1971).

    Article  CAS  PubMed  Google Scholar 

  70. M. L. Pardue and J. G. Gall, Chromosomal localization of mouse satellite DNAScience 168, 1356–1358 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. F. E. Arrighi and T. C. Hsu, Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971).

    Article  CAS  PubMed  Google Scholar 

  72. A. T. Sumner, A simple technique for demonstrating centromeric heterochromatinExp. Cell Res. 75, 304–306 (1972).

    Article  CAS  PubMed  Google Scholar 

  73. A. T. Sumner, H. J. Evans, and R. A. Buckland, A new technique for distinguishing between human chromosomes. Nature New Biol. 232, 31–32 (1971).

    Article  CAS  PubMed  Google Scholar 

  74. M. E. Drets and M. W. Shaw, Specific banding patterns of human chromosomesProc. Nat. Acad. Sci. USA 68, 2073–2077 (1971).

    Article  CAS  PubMed  Google Scholar 

  75. W. Schnedl, Analysis of the human karyotype using a reassociation techniqueChromosoma 34, 448–454 (1971).

    Article  CAS  PubMed  Google Scholar 

  76. H. A. Lubs, W. H. McKenzie, S. R. Patil, and S. Merrick, New staining methods for chromosomes in “Methods in Cell Biology” (D. M. Prescott, ed.). Vol. VI, pp. 345–380, Academic Press, London (1973).

    Google Scholar 

  77. M. Seabright, A rapid banding technique for human chromosomesLancet 2, 971–972 (1971).

    Article  CAS  PubMed  Google Scholar 

  78. B. Dutrillaux and J. Lejeune, Sur une nouvelle technique d’analyse du caryotype humain, C. R. Acad. Sci. Pans 272, 2638–2640 (1971).

    CAS  Google Scholar 

  79. J. Sehested, A simple method for R banding of human chromosomes, showing a pH-dependent connection between R and G bandsHumangenetik 21, 55–58 (1974).

    CAS  PubMed  Google Scholar 

  80. T. Ikushima and S. Wolff, Sister chromatid exchanges induced by light flashes to 5-bromodeoxyuridine- and 5-iododeoxyuridine-substituted Chinese hamster chromosomesExp. Cell Res. 87, 15–19 (1974).

    Article  CAS  PubMed  Google Scholar 

  81. T. Caspersson, U. Haglund, B Lindeel, and L. Zech, Radiation-induced non-random chromosome breakageExp. Cell Res. 75, 541–543 (1972).

    Article  CAS  PubMed  Google Scholar 

  82. M. Holmberg and J. Jonasson, Preferential location of X-ray induced chromosome breakage in the R-bands of human chromosomesHereditas 74, 57–68 (1973).

    Article  CAS  PubMed  Google Scholar 

  83. C. San Roman and M. Bobrow, The sites of radiation-induced breakage in human lymphocyte chromosomes, determined by quinacrine fluorescenceMutat. Res. 18, 325–331 (1973).

    Article  Google Scholar 

  84. M. Seabright, High-resolution studies on the patterns of induced exchanges in the human karyotypeChromosoma 40, 333–346 (1973).

    Article  CAS  PubMed  Google Scholar 

  85. J. R. K. Savage, G. E. Watson, and T. R. L. Bigger, The participation of human chromosome arms in radiation-induced chromatid exchange in “Chromosomes Today” (J. Wahrman and K. R. Lewis, eds.). Vol. 4, pp. 267–276, John Wiley & Sons, New York, and Israel Universities Press, Jerusalem (1973).

    Google Scholar 

  86. A. Patino and H.J. Evans, in preparation.

    Google Scholar 

  87. D. R. Smyth and H. J. Evans, Mapping of sister-chromatid exchanges in human chromosomes using G-banding and autoradiographyMutat. Res.(in press).

    Google Scholar 

  88. S. A. Latt, Localization of sister chromatid exchanges in human chromosomes. Science 185, 74–76 (1974).

    Article  CAS  PubMed  Google Scholar 

  89. M. M. Cohen and M. W. Shaw, Effects of mitomycin C on human chromosomesJ. Cell Biol. 23, 386–395 (1964).

    Article  CAS  PubMed  Google Scholar 

  90. P. C. Nowell, Mitotic inhibition and chromosome damage by mitomycin in human leukocyte culturesExp. Cell Res. 33, 445–449 (1964).

    Article  CAS  PubMed  Google Scholar 

  91. M. Morad, J. Jonasson, and J. Lindsten, Distribution of mitomycin C induced breaks on human chromosomesHereditas 74, 273–282 (1973).

    Article  CAS  PubMed  Google Scholar 

  92. B. R. Reeves and C. Margóles, Preferential location of chlorambucil-induced breakage in the chromosomes of normal human lymphocytesMutat. Res. 26, 205–208 (1974).

    Article  CAS  PubMed  Google Scholar 

  93. R. Howells and H.J. Evans, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, H.J. (1976). Cytological Methods for Detecting Chemical Mutagens. In: Hollaender, A. (eds) Chemical Mutagens. Chemical Mutagens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0892-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0892-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0894-2

  • Online ISBN: 978-1-4684-0892-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics