Skip to main content

Local Order and Low Frequency Modes in Amorphous Solids: Magnetic Resonance Techniques

  • Chapter
Physics of Structurally Disordered Solids

Part of the book series: Nato Science Series B: (closed) ((NSSB,volume 20))

  • 233 Accesses

Abstract

The absence in amorphous materials of long range periodic order, and hence of many of the selection rules present in crystalline materials, makes the interpretation of x-ray, neutron or electron scattering experiments much more difficult. Information concerning the static and dynamic properties of these materials must therefore be extracted using many different experimental techniques. One technique which has proven quite useful is magnetic resonance spectroscopy.

NAS-NRC Postdoctoral Associate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Silver and P. J. Bray, J. Chem. Phys. 29, 984 (1958).

    Article  ADS  Google Scholar 

  2. M. Rubinstein and P. C. Taylor, Phys. Rev. Letters 29, 119 (1972); M. Rubinstein and P. C. Taylor, Phys.Rev. 89., 4258 (1974).

    Article  ADS  Google Scholar 

  3. T. P. Das and E. L. Hahn, Solid State Physics Suppl. 1, Edited by F. Seitz and D. Turnbull, Academic Press, N. Y. (1958).

    Google Scholar 

  4. E. R. Andrew, Nuclear Magnetic Resonance, Cambridge Univ. Press, London (1958); G. E. Pake, Solid State Phys. 2, 1 (1956).

    Google Scholar 

  5. M. H. Cohen and F. Reif in Solid State Physics 5, Edited by F. Seitz and D. Turnbull, Academic Press, N. Y. (1957).

    Google Scholar 

  6. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).

    Google Scholar 

  7. J. H. Van Vleck, Phys. Rev. 74, H68 (1948); A. Abragam and K. Kambe, Phys. Rev. 91, 894 (1953).

    Article  Google Scholar 

  8. J. Van Kranendonk, Physica 20, 781 (1954).

    Article  ADS  Google Scholar 

  9. K. R. Jeffrey and R. L. Armstrong, Phys. Rev. 174, 359 (1968).

    Article  ADS  Google Scholar 

  10. P. C. Taylor, J. F. Baugher and H. M. Kriz, Chem. Reviews 75, 203 (1975).

    Article  Google Scholar 

  11. J. Wong and C. A. Angell, Applied Spectroscopy Re¬views, Vol. 4, E. G. Brame, Jr., Ed., Marcel Dekker, New York (l97l), PP. 200–232.

    Google Scholar 

  12. See for example, P. J. Bray, in Magnetic Resonance (Plenum, N. Y. (1970)), p. 11.

    Google Scholar 

  13. P. C. Taylor and P. J. Bray, J. Mag. Res. 2, 305 (1970).

    Google Scholar 

  14. J. Krogh-Moe, Phys. Chem. Glasses 3, 101 (1962). 6, 46 (1965).

    Google Scholar 

  15. P. C. Taylor and E. J. Friebele, J. Non-Cryst. Solids, 16, 375 (1974).

    Article  ADS  Google Scholar 

  16. S. L. Strong and R. Kaplow, Acta Cryst. B24, 1032 (1968); G. E. Gurr, P. W. Montgomery, C. K. Knutson and B. T. Gorres, Acta Cryst. B26, 906 (l970).

    Google Scholar 

  17. C. H. Townes and B. P. Dailey, J. Chem. Phys. 17, 782 (1949).

    Article  ADS  Google Scholar 

  18. H. M. Kriz and P. J. Bray, J. Mag. Res. 4, 76 (l97l)

    Google Scholar 

  19. H. M. Kriz and P. J. Bray, J. Non-Cryst. Solids 6, 27 (1971); K.S. Kim and P.J. Bray, J. Non-Metals (1974), in press.

    Google Scholar 

  20. C. Ree and P. J. Bray, Phys. Chem. Glasses 12, 165 (1971).

    Google Scholar 

  21. H. Bayer, Z. Phys. 130, 227 (l95l).

    Google Scholar 

  22. R. Zallen, M. L. Slade and A. T. Ward, Phys. Rev. B3, 4257 (1971).

    Article  ADS  Google Scholar 

  23. G. Lucovsky and R. M. Martin, J. Non-Cryst. Solids 8–10, 185 (1972).

    Google Scholar 

  24. P. C. Taylor, S. G. Bishop, D. L. Mitchell and D. Treacy, Proc. 5th Int• Conf. on Amorph, and Liquid Semicon. ( Taylor and Francis, London, 1974, p. 1267.

    Google Scholar 

  25. R. C. Zeller and R. O. Pohl, Phys. Rev. B4, 2029 (1971); R. B. Stephens, Phys. Rev. B8, 2896 (1973).

    Article  Google Scholar 

  26. B. Golding, J. E. Graebner, B. I. Halperin and R. J. Schultz, Phys. Rev. Letters 30, 223 (1973)5 S. Hunklinger, W. Arnold, S. Stein, R0 Nava and K. Dransfeld, Phys. Letters A 42, 253 (1972).

    Article  Google Scholar 

  27. U. Strom and P. C. Taylor, Proc. 5th Int. Conf. on Amorph, and Liquid Semicon. ( Taylor and Francis, London, 1974 ), p. 375.

    Google Scholar 

  28. R. Shuker and R. W. Gammon, Phys. Rev. Letters, 25, 222 (1970).

    Article  ADS  Google Scholar 

  29. J. Haupt and W. Müller-Warmuth, Z. Naturforshg., 239, 208 (1968)5 J. Haupt, Proc. XVI Coll. Ampere. Bucharest, 630 (1970).

    Google Scholar 

  30. M. Rubinstein, H. Reising and J. R. Hendrickson, Bull. Am. Phys. Soc., 19, 202 (1974).

    Google Scholar 

  31. P. W. Anderson, B. I. Halperin and C. M. Varma, Phil. Mag. 25, 1 (1972).: ¥. A. Philips, J. Low Temp. Phys. 7., 351 (1972).

    Google Scholar 

  32. H. B. Rosenstock, J. Non. Cryst. Solids 7, 123 (1972).

    Article  ADS  Google Scholar 

  33. D. Ng and R. J. Sladek, Fifth International Conf. on Amorphous and Liquid Semiconductors, ( Taylor and Francis, London, 1974 ), p. 1173

    Google Scholar 

  34. J. Jackie, Z. Physik 257, 212 (1972).

    Article  ADS  Google Scholar 

  35. N. Bloembergen, Physica 15, 386 (1949).

    Article  ADS  Google Scholar 

  36. J. Hatton and B. V. Rollin, Proc. Roy. Soc. A 199, 222 (1949).

    Article  ADS  Google Scholar 

  37. Paramagnetic impurities are known to exist in vitreous As2S3 and could relax the nuclear spins. Magnetic susceptability measurements (J. DiSalvo, A. Menth, J. V. Waszczak and J. Taue, Phys. Rev. B6, 4574 (1972))indicate that the paramagnetic impurities in As2S3 effective at low temperatures are Fe3+ ions in concentrations of n ~10-6. Since relaxation times for Fe 3+ ions at low temperature are typically Tc ~ 10-5 sec, the concentration of Fe3+ ions is about four orders of magnitude too small to account for the observed average relaxation rates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, P.C., Friebele, E.J., Rubinstein, M. (1976). Local Order and Low Frequency Modes in Amorphous Solids: Magnetic Resonance Techniques. In: Mitra, S.S. (eds) Physics of Structurally Disordered Solids. Nato Science Series B: (closed), vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0850-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0850-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0852-2

  • Online ISBN: 978-1-4684-0850-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics