Skip to main content

Thymidine Metabolism in Bacteria (and “How, or How Not, to Label DNA”)

  • Chapter
DNA Synthesis

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 17))

Abstract

Radioactive labelling techniques are of major importance in the study of DNA synthesis in bacteria. In order to label DNA in Escherichia coli either radioactive thymine or thymidine is generally used because these compounds are specifically incorporated into DNA. The availability of mutants, unable to synthesize thymidylate (Thy-), makes possible the control of the specific activity of newly synthesized DNA by adjusting the specific activity of exogenously added thymine or thymidine. In experiments which measure the short-term incorporation of labelled precursors other factors must be considered. These include the intracellular precursor pool sizes of bases, nucleosides and nucleotides, the rates of uptake, as well as the points of entry of the particular exogenously labelled compounds. The transport of nucleosides and bases from the medium into the cells is of considerable importance since this may result in differences between strains in the incorporation of labelled precursors into DNA. This effect is evident only when extremely low exogenous concentrations of precursors are used and it can give the appearance of altered levels of DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pritchard, R.H. (1974) Phil. Trans. Royal Soc. London 267: 303–336

    CAS  Google Scholar 

  2. Pritchard, R.H. and A. Zaritsky (1970) Nature 226: 126–131

    PubMed  CAS  Google Scholar 

  3. Cooper, S. and C E. Helmstetter (1968) J. Molec. Biol. 31: 519–540

    PubMed  CAS  Google Scholar 

  4. Helmstetter, C.E and S. Cooper (1968) J. Molec. Biol. 31: 507–518

    PubMed  CAS  Google Scholar 

  5. Maaloe, O. (1976) In: Alfred Benzon Symposium IX on Control of Ribosome Synthesis. Munksgaard, Copenhagen (eds. N.O. Kjeldgaard and O. Maaloe) Academic Press, New York pp. 15–21

    Google Scholar 

  6. Pritchard, R.H., P.T. Barth and J. Collins (1969) XIX Microbial Growth, Symp. Soc. Gen. Microbiol. pp-263–297

    Google Scholar 

  7. Zaritsky, A. and R.H. Pritchard (1971) J. Molec. Biol. 60: 65–74

    PubMed  CAS  Google Scholar 

  8. Zaritsky, A. and R.H. Pritchard (1973) J. Bacteriol. 114: 824–837

    PubMed  CAS  Google Scholar 

  9. Anderson, M.L.M., these proceedings

    Google Scholar 

  10. Friedkin, M. and A. Kornberg (1957) In: A Symposium on the Chemical Basis of Heredity. (eds; W.D. McElroy and B. Glass) Johns Hopkins Press, Baltimore. pp. 609–613

    Google Scholar 

  11. Cohen, S.S. and H.D. Barner (1954) Proc. Nat. Acad. Sci. USA 40: 885–893

    Google Scholar 

  12. Okada, T., J. Homma and H. Sonohara (1962) J. Bacteriol. 84: 602–603

    Google Scholar 

  13. Okada, T., K. Yanagisawa and F.J. Ryan (1961) Z. Vererb. 92: 403–412

    CAS  Google Scholar 

  14. Stacey, K.A. and E. Simson (1965) J. Bacteriol. 90: 554–555

    PubMed  CAS  Google Scholar 

  15. Eisenstark, A., R. Eisenstark and S. Cunningham (1968) Genetics 58: 493–506

    PubMed  CAS  Google Scholar 

  16. Farmer, J.L. and F. Rothman (1965) J. Bacteriol. 89: 262–263

    PubMed  CAS  Google Scholar 

  17. Harrison, A.P. (1965) J. Gen. Microbiol. 41: 321–333

    PubMed  CAS  Google Scholar 

  18. Ishibashi, M., Y. Sugino and Y. Hirota (1964) J. Bacteriol. 87: 554–567

    PubMed  CAS  Google Scholar 

  19. Marouf, B.A. (1973) Ph.D. Thesis, Texas A & M University

    Google Scholar 

  20. Kelln, R.A. and R.A.J. Warren (1973) J. Bacteriol. 113: 510–511

    PubMed  CAS  Google Scholar 

  21. Wilson, M.C., J.L. Farmer and F. Rothman (1976) J. Bacteriol. 92: 186–196

    Google Scholar 

  22. Bertino, J-B. and K.A. Stacey (1966) Biochem. J. 101: 32–33c

    Google Scholar 

  23. Neuhard, J., A.R. Price, L. Schack and E. Thomassen (1977) Proc. Nat. Acad. Sci. USA (in press)

    Google Scholar 

  24. Anagnostopoulos, C. and A. Schneider-Champagne (1966) C.R. Acad. Sci., Paris 262: 1311–1314

    CAS  Google Scholar 

  25. Price, A.R., these proceedings

    Google Scholar 

  26. Larsson, A. and P. Reichard (1967) Progr. Nucl. Acid Res. 7: 303–347

    CAS  Google Scholar 

  27. Bertani, L.E., A. Häggmark and P. Reichard (1963) J. Biol. Chem. 238: 3407–3413

    CAS  Google Scholar 

  28. Greenberg, G.R. and R.L. Somerville (1962) Proc. Nat. Acad. Sci. USA 48: 249–257

    Google Scholar 

  29. Tye, B.-K., P.-0. Nyman, I.R. Lehman, S. Hochhauser and B. Weiss (1977) Proc. Nat. Acad. Sci. USA 74: 154–157

    Google Scholar 

  30. Lehman, I.R., these proceedings

    Google Scholar 

  31. Warner, H., these proceedings

    Google Scholar 

  32. Häggmark, A. (1967) 4th FEBS Meeting, Oslo, p296

    Google Scholar 

  33. Karlström, O. and A. Larsson (1967) Eur. J. Biochem. 3: 164–170

    PubMed  Google Scholar 

  34. Neuhard, J. (1968) J. Bacteriol. 96: 1519–1527

    PubMed  CAS  Google Scholar 

  35. Neuhard, J. and E. Thomassen (1971) J. Bacteriol. 105: 657–665

    PubMed  CAS  Google Scholar 

  36. O’Donovan, G.A., G. Edlin, J.A. Fuchs, J. Neuhard and E. Thomassen (1971) J. Bacteriol. 105: 657–665

    Google Scholar 

  37. Munch-Petersen, A. (1970) Eur. J. Biochem. 15: 191–202

    PubMed  CAS  Google Scholar 

  38. Neuhard, J. and A. Munch-Petersen (1966) Biochim. Biophys. Acta 114: 61–71

    PubMed  CAS  Google Scholar 

  39. Neuhard, J. and E. Thomassen (1976) J. Bacteriol. 126: 999–1001

    PubMed  CAS  Google Scholar 

  40. Beck, C.D., J. Neuhard and E. Thomassen (1977) J. Bacteriol. 129: 305–318

    PubMed  CAS  Google Scholar 

  41. O’Donovan, G.A. (1970) Biochim. Biophys. Acta 209: 589–591

    PubMed  Google Scholar 

  42. Biswas, C., J. Hardy and W.S. Beck (1965) J. Biol. Chem. 240: 3631–3639

    Google Scholar 

  43. Larsson, A. and P. Reichard (1966) J. Biol. Chem. 241: 2533–2539

    PubMed  CAS  Google Scholar 

  44. Larsson, A. and P. Reichard (1966) J. Biol. Chem. 241: 2540–2549

    PubMed  CAS  Google Scholar 

  45. Budman, D.R. and A.B. Pardee (1967) J. Bacteriol. 94: 1546–1550

    PubMed  CAS  Google Scholar 

  46. Schwartz, M. (19.71) Eur. J. Biochem. 21: 191–198

    Google Scholar 

  47. Beacham, I.R., P.T. Barth and R.H. Pritchard (1968) Biochim. Biophys. Acta 166: 589–592

    PubMed  CAS  Google Scholar 

  48. Munch-Petersen, A. (1968) Eur. J. Biochem. 6:432–442 48a. Minghetti, A. (1959) Ital. J. Biochem. 8: 224–230

    Google Scholar 

  49. Minghetti, A. (1959) Ital. J. Biochem. 8: 224–230

    Google Scholar 

  50. Imada, A. and S. Igarasi (1967) J. Bacteriol. 94: 1551–1559

    PubMed  CAS  Google Scholar 

  51. Saunders, P.P., B.A. Wilson and G.F. Saunders (1969) J. Biol. Chem. 244: 3691–3697

    PubMed  CAS  Google Scholar 

  52. Wang, T.P. and J.0. Lampen (1951) J. Biol. Chem. 192: 339–347

    PubMed  CAS  Google Scholar 

  53. Okazaki, R. and A. Kornberg (1964) J. Biol. Chem. 239: 269–274

    PubMed  CAS  Google Scholar 

  54. Okazaki, R. and A. Kornberg (1964) J. Biol. Chem. 239: 275–284

    PubMed  CAS  Google Scholar 

  55. Neuhard, J. (1967) Biochim. Biophys. Acta 145: 1–6

    Google Scholar 

  56. Neuhard, J. (1966) Biochim. Biophys. Acta 129: 104–115

    Google Scholar 

  57. Fäth, W.W. and M. Brendel (1974) Molec. Gen. Genet. 131: 57–67

    Google Scholar 

  58. Crawford, L.W. (1958) Biochim. Biophys. Acta 30: 428–429

    PubMed  CAS  Google Scholar 

  59. Siminovitch, L. and A.F. Graham (1955) Can. J. Microbiol. 1: 721–732

    PubMed  CAS  Google Scholar 

  60. Boyce, R.P. and R.B. Setlow (1962) Biochim. Biophys. Acta 61: 618–620

    CAS  Google Scholar 

  61. Kammen, H.O. (1967) Biochim. Biophys. Acta 134: 301–311

    CAS  Google Scholar 

  62. Munch-Peterson, A. (1967) Biochim. Biophys. Acta 142: 228–237

    Google Scholar 

  63. Rachmeler, J., J. Gerhart and J. Rosner (1961) Biochim. Biophys. Acta 49: 222–225

    CAS  Google Scholar 

  64. Fangman, W.L. (1969). J. Bacteriol. 99: 681–687

    PubMed  CAS  Google Scholar 

  65. Fangman, W.L. and A. Novick (1966) J. Bacteriol. 91: 2390–2394

    PubMed  CAS  Google Scholar 

  66. Beacham, I.R. and R.H. Pritchard (1971) Molec. Gen. Genet. 110: 289–298

    Google Scholar 

  67. Leer, J.C., K. Hammer-Jespersen and M. Schwartz (1977) 75: 217–224

    Google Scholar 

  68. Womack, J.E. (1977) Molec. Gen. Genet. (in press)

    Google Scholar 

  69. Lichtenstein, J., H.D. Barner and S.S. Cohen (1960) J. Biol. Chem. 235: 457–465

    PubMed  CAS  Google Scholar 

  70. O’Donovan, G.A. and J. Neuhard (1970) Bacteriol. Rev. 34: 278–343

    PubMed  Google Scholar 

  71. Breitman, T.R., R.M. Bradford and W.D. Cannon, Jr. (1967) J. Bacteriol. 93: 1471–1472

    PubMed  CAS  Google Scholar 

  72. Roepke, R.R. (1967) J. Bacteriol. 93: 1188–1189

    PubMed  CAS  Google Scholar 

  73. Roepke, R.R. and F.E. Mercer (1947) J. Bacteriol. 54: 731–743

    CAS  Google Scholar 

  74. Beacham, I.R., K. Beacham, A. Zaritsky and R.H. Pritchard (1971) J. Molec. Biol. 60: 75–86

    PubMed  CAS  Google Scholar 

  75. Alikhanian, S.E.I., T.S. Iljina, E.S. Kaliaeva, S.V. Kameneva and U.V. Sukhodolec (1966) Genet. Res. 8: 83–100

    PubMed  CAS  Google Scholar 

  76. Beacham, I.R., A. Eisenstark, P.T. Barth and R.H. Pritchard (1968) Molec. Gen. Genet. 102: 112–127

    PubMed  CAS  Google Scholar 

  77. Ahmad, S.I. and R.H. Pritchard (1971) Molec. Gen. Genet. 111: 77–83

    PubMed  CAS  Google Scholar 

  78. Albrechtsen, H., K. Hammer-Jespersen and A. Munch-Petersen (1976) Molec. Gen. Genet. 146: 139–145

    PubMed  CAS  Google Scholar 

  79. Okada, T. (1966) Genetics 54: 1329–1336

    PubMed  CAS  Google Scholar 

  80. Munch-Petersen, A. (1968) Biochim. Biophys. Acta 161: 279–282

    PubMed  CAS  Google Scholar 

  81. Okada, T., H. Torii and S. Kuno (1969) Jap. J. Genet. 44: 193–200

    CAS  Google Scholar 

  82. Lomax, M.S. and G.R. Greenberg (1968) J. Bacteriol. 96: 501–514

    PubMed  CAS  Google Scholar 

  83. Hoffee, P.A. (1968) J. Bacteriol. 95: 449–457

    PubMed  CAS  Google Scholar 

  84. Hoffee, P.A. and B.C. Robertson (1969) J. Bacteriol. 97: 1386–1396

    PubMed  CAS  Google Scholar 

  85. Sakai, H., S. Hashimoto and T. Komano (1974) J. Bacteriol. 119: 811–820

    PubMed  CAS  Google Scholar 

  86. Sakai, H. and T. Komano (1975) Biochim. Biophys. Acta 395: 433–445

    PubMed  CAS  Google Scholar 

  87. Bertani, G. (1951) J. Bacteriol. 62: 293–300

    PubMed  CAS  Google Scholar 

  88. Derstine, P.L. and L.B. Dumas (1976) J. Bacteriol. 128: 801–809

    PubMed  CAS  Google Scholar 

  89. Blau, S. and J. Murdoh (1972) Proc. Nat. Acad. Sci. USA 69: 2895–2898

    PubMed  CAS  Google Scholar 

  90. Sevastopoulos, G.G., C.T. Wehr and D.A. Glaser (1977) Proc. Nat. Acad. Sci. USA 74: 3485–3489

    PubMed  CAS  Google Scholar 

  91. Lark, K.G. (1966) Bacteriol. Rev. 30: 3–32

    PubMed  CAS  Google Scholar 

  92. Hosono, H. and S. Kuno (1975) Eur. J. Biochem. 57: 177–179

    PubMed  CAS  Google Scholar 

  93. Munch-Petersen, A. (1970) Eur. J. Biochem. 15: 191–202

    PubMed  CAS  Google Scholar 

  94. Breitman, T.R. and R.M. Bradford (1964) Biochem. Biophys. Res. Commun. 17: 786–791

    CAS  Google Scholar 

  95. Valentin-Hansen, P., B.A. Svenningsen, A. Munch-Petersen and K. Hammer-Jesperen (1977) Molec. Gen. Genet., in press

    Google Scholar 

  96. Englesberg, E., R.L. Anderson, R. Weisberg, N. Lee, P. Hoffee, A. Hottenhauer and H. Boyer (1962) J. Bacteriol. 84: 137–146

    PubMed  CAS  Google Scholar 

  97. Cozzarelli, N.R., J.P. Koch and E.C.C. Lin (1965) J. Bacteriol. 90: 1325–1329

    PubMed  CAS  Google Scholar 

  98. Böck, A. and F.C. Neidhardt (1966) J. Bacteriol. 92: 470–476

    PubMed  Google Scholar 

  99. Kurahashi, K. and A.J. Wahba (1958) Biochim. Biophys. Acta 30: 298–302

    CAS  Google Scholar 

  100. Ferenci, T. and H.L. Kornberg (1973) Biochem. J. 132: 341–347

    PubMed  CAS  Google Scholar 

  101. Englesberg, E. and L.S. Baron (1959) J. Bacteriol. 78: 675686

    Google Scholar 

  102. Lengeler, L. (1975) J. Bacteriol. 124: 26–38

    PubMed  CAS  Google Scholar 

  103. Solomon, E. and E.C.C. Lin (1972) J. Bacteriol. 111: 566–574

    PubMed  CAS  Google Scholar 

  104. Yarmolinsky, M.B., H. Wiesmeyer, H.M. Kalckar and E. Jordon (1959) Proc. Nat. Acad. c. USA 45: 1786–1791

    CAS  Google Scholar 

  105. Schwartz, V., L. Golberg, G.M. Komrower and A. Holzel (1956) Biochem. J. 62: 34–40

    Google Scholar 

  106. Reiner, A.M. (1977) J. Bacteriol. 132: 166–173

    PubMed  CAS  Google Scholar 

  107. Postma, P.W. and S. Roseman (1976) Biochem. Biophys. Acta 457: 213–257

    Google Scholar 

  108. Curtis, S.J. and W. Epstein (1975) J. Bacteriol. 122:1189–1199

    Google Scholar 

  109. Joyce-Mortimer, M.C. and H.L. Kornberg (1976) J. Gen. Microbiol. 96: 383–392

    Google Scholar 

  110. Legeler, J. and E.C.C. Lin (1972) J. Bacteriol. 112:840–848

    Google Scholar 

  111. Reiner, A.M. (1975) J. Bacteriol. 123: 530–536

    Google Scholar 

  112. McKeown, M., M. Kahn and P. Hanawalt (1976) J. Bacteriol. 126: 814–822

    PubMed  CAS  Google Scholar 

  113. Nakae, T. and H. Nikaido (1975) J. Biol. Chem. 250: 7359–7365

    PubMed  CAS  Google Scholar 

  114. Smeleman, S. and M. Hofnung (1975) J. Bacteriol. 124: 112–118

    Google Scholar 

  115. Michael, J.G. (1968) Proc. Soc. Exp. Biol. Med. 128: 434–438

    PubMed  CAS  Google Scholar 

  116. Weltzien, H.U. and M.A. Hesaitis (1971) J. Exp. Med. 133: 534–553

    PubMed  CAS  Google Scholar 

  117. Hantke, K. (1976) FEBS Lett. 70:109–112

    Google Scholar 

  118. Bachmann, B. J. (1972) Bacteriol. Rev. 36: 525–557

    Google Scholar 

  119. Diaz, A.T., D. Wiener and R. Werner (1975) J. Molec. Biol. 95: 45–61

    PubMed  CAS  Google Scholar 

  120. Okazaki, R., T. Okazaki, K. Sakabe, K. Sugimoto, R. Kainuma, A. Sugino and N. Iwatsuki (1968) Cold Spring Harbor Symp. Quant. Biol. 33: 129–143

    Google Scholar 

  121. Werner, R. (1971) Nature 230: 570–572

    PubMed  CAS  Google Scholar 

  122. Olivera, B.M. and I.R. Lehman (1967) Proc. Nat. Acad. Sci. USA 57: 1426–1433

    PubMed  CAS  Google Scholar 

  123. Dingman, C.W., M.P. Fisher and M. Ishizawa (1974) J. Molec. Biol. 84: 275–295

    PubMed  CAS  Google Scholar 

  124. Brewin, N. (1977) J. Molec. Biol. 111: 343–352

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

O’Donovan, G.A. (1978). Thymidine Metabolism in Bacteria (and “How, or How Not, to Label DNA”). In: Molineux, I., Kohiyama, M. (eds) DNA Synthesis. NATO Advanced Study Institutes Series, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0844-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0844-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0846-1

  • Online ISBN: 978-1-4684-0844-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics