Biochemical and Pharmacological Studies on an Animal Model of Hyperactivity States

  • Marta Weinstock
  • Zipora Speiser
  • Ruth Ashkenazi


One of the major contributions that the research scientist can make to psychiatry is to elucidate the mechanism of existing psychotropic drugs and to design suitable tests for the discovery of new ones.


Open Field Behavior Left Lateral Ventricle Brain Noradrenaline Block Dopamine Receptor Central Noradrenaline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Randrup, A. and Munkvad, I.: Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia (Berl.) II 300–310, 1967.CrossRefGoogle Scholar
  2. (2).
    Matussek, N. and Linsmayer, M.: The effect of lithium and amphetamine on desmethylimipramine-Ro 4-1284 induced motor hyperactivity. Life Sciences 7, 371–375, 1968.PubMedCrossRefGoogle Scholar
  3. (3).
    GRAHAME-Smith, D.G.: Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by 1-tryptophan or 5-methoxy-N, N dlmethyltryptamine in rats treated with a mono-amine oxidase inhibitor. Br. J. Pharmac. 43, 856–864, 1972.Google Scholar
  4. (4).
    Garattini, S.: Importance of a knowledge of drug metabolism for the assessment of drug interactions. In: Importance of Fundamental Principles in Drug Evaluation. Eds. Tedeschi, D.H. and Tedeschi, R.E., 121–139,Raven Press, New York.Google Scholar
  5. (5).
    Sulser, F. and Sanders-Bush, E.: Biochemical and metabolic considerations concerning the mechanism of action of amphetamine and related compounds. In: Psychotomimetic Drugs, Ed. Efron, D.H.,Raven Press, New York, 83–94 1970.Google Scholar
  6. (6).
    Valzelli, L.: Drugs and aggressiveness. In: Advances in Pharmacology. Eds. Garattini, S. and Shore, P.A. Vol. 5, 79–108, 1967, Academic Press, New York.Google Scholar
  7. (7).
    Weinstock, M. and Speiser, Z.: The effect of dl-propranolol, d-propranolol and practolol on the hyperactivity induced in rats by prolonged isolation. Psychopharmacologia, (Berl.) 30, 241–250, 1973.PubMedCrossRefGoogle Scholar
  8. (8).
    Merlis, J.K.: The effect of changes in calcium content of the cerebrospinal fluid on spinal reflex activity in the dog. Amer. J. Physiol. 131, 67–72, 1940.Google Scholar
  9. (9).
    Barchas, J., Erdelyi, E., and Angwin, P.: Simultaneous determination of indole-and catecholamines in tissues using a weak cation exchange resin. Analyt. Biochem. 50, 1–17, 1972.PubMedCrossRefGoogle Scholar
  10. (10).
    Schildkraut, J.J.: The catecholamine hypothesis of affective disorders: a review of supporting evidence. Amer. J. Psychiat. 122, 509–522, 1965.PubMedGoogle Scholar
  11. (11).
    M.R.C. Brain Metabolism unit: Modified amine hypothesis for the etiology of affective illness. Lancet II 573–577, 1972.Google Scholar
  12. (12).
    Sulser, F. and Sanders-Bush E.: Effect of drugs on amines in the C.N.S. Ann. Rev. Pharmacol. 11, 209–230, 1971.CrossRefGoogle Scholar
  13. (13).
    Sorenson, C.A. and Ellison, G.D.: Nonlinear changes in activity and emotional reactivity scores following central noradrenergic lesions in rats. Psychopharmacologia (Berl.) 32, 313–325, 1973.PubMedCrossRefGoogle Scholar
  14. (14).
    Valzelli, L: The “isolation syndrome” in mice. Psychopharmacologia 31, 305–320, 1973.PubMedCrossRefGoogle Scholar
  15. (15).
    Sofia, R.D.: Effects of centrally active drugs on four models of experimentally-induced aggression in rodents. Life Sci. 8 Part 1. 705–716, 1969.Google Scholar
  16. (16).
    Anden, N.E. and Strömbom, U.: Adrenergic receptor blocking agents. Effects on central noradrenaline and dopamine receptors and on motor activity. Psychopharmacologia (Berl.) 38, 91–103, 1974.Google Scholar
  17. (17).
    Palmer, G.C., Sulser, F. and Robinson, G.A.: Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of rat brain in vitro. Neuropharmacol. 12, 327–337, 1973.CrossRefGoogle Scholar
  18. (18).
    Anden, N-E., Strömbom, U. and Svensson, T.H.: Dopamine and noradrenaline receptor stimulation: reversal of reserpine induced suppression of motor activity. Psychopharma-cologia 29, 289–298, 1973.CrossRefGoogle Scholar
  19. (19).
    Yorkston, N.J., Malik, M.K.U., Harvard, C.W.H., Zaki, S.A. and Morrison, R.C.: Propranolol in control of schizophrenic symptoms. Brit. Med. J. 4, 633–635, 1974.PubMedCrossRefGoogle Scholar
  20. (20).
    Lader, M.H. and Tyrer: Central and peripheral effects of propranolol and Sotalol in normal human subjects. Br. J. Pharmac. 45, 577–560, 1972.Google Scholar
  21. (21).
    Eliash, S. and Weinstock, M.: Role of adrenergic neurone blockade in hypotensive action of propranolol. Br. J. Pharmac. 43, 287–294, 1971.Google Scholar
  22. (22).
    Mylecharane, E.J. and Raper, C: Further studies on the adrenergic neuron blocking activity of some ß-adrenoceptor antagonists and guanethidine. J. Pharmacol. 25, 213–218, 1973.CrossRefGoogle Scholar
  23. (23).
    Weinstock, M. Unpublished observations.Google Scholar
  24. (24).
    Dunlop, D. and Shanks, R.G.: Selective blockade of adreno-ceptive ß-receptors in the heart. Br. J. Pharmac. 32, 201–212, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Marta Weinstock
    • 1
  • Zipora Speiser
    • 1
  • Ruth Ashkenazi
    • 2
  1. 1.Department of Physiology and PharmacologySackler School of MedicineTel-AvivIsrael
  2. 2.Department of PhysiologyHadassah School of MedicineJerusalemIsrael

Personalised recommendations