Advertisement

Waveguide Techniques

  • D. J. E. Ingram

Abstract

Except for the initial experiment of Cleeton and Williams(1), all microwave spectroscopes have used a waveguide system to transmit the radiation from the source to the absorption cell and on to the detector, in contrast to optical, ultra-violet, and infra-red work, where free space propagation is employed. A brief summary of the properties of waveguides is therefore necessary in order to understand the design of actual spectroscopes.

Keywords

Directional Coupler Cavity Resonator Rectangular Cavity Hybrid Ring Maximum Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleeton, C. E. and Williams, N. H. Phys. Rev. 45 (1934) 234.ADSCrossRefGoogle Scholar
  2. 2.
    Montgomery, C. G. Technique of Microwave Measurements M.I.T Radiation Laboratory Series No. 11 p. 875 (1947).Google Scholar
  3. 3.
    ibid. p. 858.Google Scholar
  4. 4.
    Bethe, H. A. Radiation Laboratory Reports Nos. 194 and 199 (1943).Google Scholar
  5. 5.
    Montgomery, C. G. Technique of Microwave Measurements p. 774 (1947).Google Scholar
  6. 6.
    Gordy, W. and King, W. G. Phys. Rev. 93 (1954) 407.ADSCrossRefGoogle Scholar
  7. 7.
    Burrus, C. A. and Gordy, W. Phys. Rev. 93 (1954) 897.ADSCrossRefGoogle Scholar
  8. 8.
    Geschwind, S. Ann. N.Y. Acad. Sci. 55 (1952) 751.ADSCrossRefGoogle Scholar
  9. 9.
    Condon, E. U. Rev. mod. Phys. 14 (1942) 341.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  10. Hansen, W. W. J. Appl. Phys. 9 (1938) 654.ADSCrossRefGoogle Scholar
  11. 10.
    Bleaney, B., Loubser, J. H. N. and Penrose, R. P. Proc. phys. Soc. 59 (1947) 185.ADSCrossRefGoogle Scholar
  12. 11.
    Kikuchi, C. and Cohen, V. W. Phys. Rev. 93 (1954) 394.ADSCrossRefGoogle Scholar
  13. 12.
    Ragan, G. L. Microwave Transmission Circuits M.I.T. Radiation Laboratory Series No. 9 p. 655 (1948).Google Scholar
  14. 13.
    Jen, C. K. Phys. Rev. 72 (1947) 986.ADSCrossRefGoogle Scholar
  15. Jen, C. K. Phys. Rev. 74 (1948) 1396.ADSCrossRefGoogle Scholar
  16. Jen, C. K. Phys. Rev. 76 (1949) 1494.ADSCrossRefGoogle Scholar
  17. 14.
    Gordy, W. Rev. mod. Phys. 20 (1948) 675.ADSCrossRefGoogle Scholar
  18. 15.
    Townes, C. H. and Geschwind, S. J. Appl. Phys. 19 (1948) 795.ADSCrossRefGoogle Scholar
  19. 16.
    Strandberg, M. W. P., Johnson, H. R. and Eschbach, J. R. Rev. sci. Instrum. 25 (1954) 776.ADSCrossRefGoogle Scholar
  20. 17.
    Mays, J. M. Ann. N. Y. Acad. Sci. 55 (1952) 789.ADSCrossRefGoogle Scholar
  21. 18.
    Stitch, M. L., Honig, A. and Townes, C. H. Rev. sci. Instrum. 25 (1954) 759.ADSCrossRefGoogle Scholar
  22. 19.
    King, W. C. and Gordy, W. Phys. Rev. 93 (1954) 411.ADSGoogle Scholar
  23. 20.
    Lyons, H. Ann. N. Y. Acad. Sci. 55 (1952) 854.CrossRefGoogle Scholar

Copyright information

© Butterworths Scientific Publications 1955

Authors and Affiliations

  • D. J. E. Ingram
    • 1
  1. 1.University of SouthamptonUK

Personalised recommendations