Skip to main content

Particle Methods for Plasma Diagnostics

  • Chapter
  • 264 Accesses

Abstract

A basic advantage of the method considered here, as compared with electric probes, is the fact that an ion beam of low intensity creates a very small perturbation of the plasma. A beam of charged particles that passes through a plasma can be used to investigate both constant and time-varying electric fields. The frequency and amplitude of high-frequency oscillations can be determined directly from an analysis of the energy distribution or the spatial localization of a beam that is transmitted through the plasma at different instants of time. The method by which the experiment is carried out depends very much on the nature of the problem, on the configuration of the magnetic field, and on other experimental conditions, so that it is extremely difficult to formulate general principles for the use of a beam of charged particles. We shall limit ourselves to the analysis of several particular cases. We first consider experiments on the determination of the azimuthal and radial components of the electric field that arises in an axially symmetric magnetic-mirror device when it is filled with plasma. The beam of electrons moves along the lines of force of the magnetic field in the absence of plasma; in the presence of an electric field these electrons experience a drift in the crossed fields. By locating an electron gun in the region of one of the mirrors and a fluorescent screen at the other it is possible to obtain visual or photographic indications of the displacement of the position of the beam due to the components of the electric field which are perpendicular to the lines of force of the magnetic field. The system essentially comprises an oscilloscope with the role of the deflection plates being played by the stationary and high-frequency electric fields that arise in the plasma. In the absence of the plasma the beam of electrons moves along the lines of force of the magnetic field and produces a luminous dot on the screen. The screen is protected by a thin aluminum foil from the incident light and is also furnished with a system of grids, which prevent slow charged particles from striking the screen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. A. Kucheryaev and D. A. Panov, in: Plasma Diagnostics [in Russian], Gos-atomizdat, Moscow, 1963, p. 223.

    Google Scholar 

  2. K. D. Sinel’nikov, et al., Zh. Tekh. Fiz., 30:256 (1960) [Sov. Phys.— Tech. Phys., 5(3):236 (1960)].

    Google Scholar 

  3. O. A. Lavrent’ev, in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 233.

    Google Scholar 

  4. Ya. B. Fainberg, Atomnaya Énergiya, 11:313 (1961) [Sov. Atomic Energy, 11(4):958 (1962)].

    Google Scholar 

  5. L.I. Krupnik and N. G. Shchulika, in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 212.

    Google Scholar 

  6. O. V. Kozlov, et al., in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 199.

    Google Scholar 

  7. Ya. M. Fogel’, et al., Zh. Tekh. Fiz., 25:1944 (1955).

    Google Scholar 

  8. V. V. Afrosimov, et al., Zh. Tekh. Fiz., 36:89 (1966) [Sov. Phys.—Tech. Phys., 11(1):63 (1966)].

    Google Scholar 

  9. Barnett, et al., Atomic and Molecular Collision Cross Sections of Interest in Controlled Thermonuclear Research, U.S. AEC, Oak Ridge, 1964.

    Google Scholar 

  10. N. V. Fedorenko, et al., Zh. Eksp. Teor. Fiz., 36:385 (1959) [Sov. Phys. — JETP, 9:267 (1959)].

    Google Scholar 

  11. Ya. M. Fogel’, et al., Zh. Eksp. Teor. Fiz., 34:579 (1958) [Sov. Phys. — JETP, 7(3):400 (1958)].

    Google Scholar 

  12. Ya. M. Fogel’ and L. I. Krupnik, Zh. Eksp. Teor. Fiz., 28:589 (1955) [Sov. Phys.-JETP, 1(3):415 (1955)].

    Google Scholar 

  13. W.L. Fite, et al., Proc. Roy. Soc, A268:527 (1962).

    ADS  Google Scholar 

  14. V. M. Chicherov, Zh. Tekh. Fiz., 36:1055 (1966) [Sov. Phys.-Tech. Phys., 11(6):777 (1966)].

    Google Scholar 

  15. J. Alexeff, et al., Phys. Rev., 136A:689 (1964).

    Article  ADS  Google Scholar 

  16. V. B. Leonas, Usp.Fiz. Nauk, 82:287 (1964) [Sov. Phys.-Usp., 7(1): 121 (1964)].

    Google Scholar 

  17. I. K. Kikoin, et al., in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 193.

    Google Scholar 

  18. K. Ehers, Rev. Sci. Instrum., 29:614 (1958).

    Article  ADS  Google Scholar 

  19. A. V. Chernetskii, O. A. Zinov’ev, and O. V. Kozlov, Instruments and Methods in Plasma Research [in Russian], Atomizdat, Moscow, 1965.

    Google Scholar 

  20. L. A. Artsimovich, et al., Atomnaya Énergiya, No. 3, 84 (1956) [Sov. Atomic Energy, 1(1): (1956)].

    Google Scholar 

  21. S. Yu. Luk’yanov and I. M. Podgornyi, Atomnaya Énergiya, No. 3, 97 (1956) [Sov. Atomic Energy, 1(1): (1956)].

    Google Scholar 

  22. I. M. Podgornyi, N. G. Koval’skii, and V. E. Pal’chikov, Dokl. Akad. Nauk SSSR, 123:825 (1958) [Sov. Phys. —Dokl., 3 (6):1208 (1958)].

    Google Scholar 

  23. N. G. Koval’skii, I. M. Podgornyi, and M. Stepanenko, Zh. Eksp. Teor. Fiz., 38:1439 (1960) [Sov. Phys. — JETP, ll (5):1040 (1960)].

    Google Scholar 

  24. S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Zh. Tekh. Fiz., 33:1929 (1961).

    Google Scholar 

  25. I.I. Konovalov, et al., in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 154.

    Google Scholar 

  26. L. I. Krupnik and N. G. Shulika, in: Plasma Physics and the Problem of Controlled Thermonuclear Fusion, Vol. 3, Naukova Dumka, Kiev, 1965, p. 353.

    Google Scholar 

  27. N. G. Kova’skii and V. N. Sumarokov, Zh. Tekh. Fiz., 36:1976 (1966) [Sov. Phys.-Tech. Phys., 11 (11):1471 (1967)].

    Google Scholar 

  28. V. V. Afrosimov, et al., Nucl. Fusion, Suppl. III, 921 (1962).

    Google Scholar 

  29. V.V. Afrosimov, et al., Zh. Tekh. Fiz., 33:205 (1963) [Sov. Phys.’ Tech. Phys., 8(2):147 (1963)].

    Google Scholar 

  30. V. V. Afrosimov, et al., Zh. Tekh. Fiz., 30:1456 (1960) [Sov. Phys.’ Tech. Phys., 5(12):1378 (1961)].

    Google Scholar 

  31. Yu. V. Gott and V.G. Terkovskii, Zh. Tekh. Fiz., 31:1061 (1961) [Sov. Phys.’ Tech. Phys., 6(9):774 (1962)].

    Google Scholar 

  32. Yu. V. Gott and V. G. Tel’kovskii, Zh. Tekh. Fiz., 34:2114 (1964) [Sov. Phys.’ Tech. Phys., 9(12):1628 (1965)].

    Google Scholar 

  33. V.V. Afrosimov, et al., Zh. Tekh. Fiz., 30:1469 (1960) [Sov. Phys. &x2019; Tech. Phys., 5(12):1389 (1961)].

    Google Scholar 

  34. I. M. Podgornyi and V.N. Sumarokov, Nucl. Energy, Cl:236 (1960).

    Article  Google Scholar 

  35. L. L. Gorelik and V. I. Sinitsyn, Zh. Tekh. Fiz., 32:1406 (1962) [Sov. Phys.’ Tech. Phys., 7(11):1036 (1963)].

    Google Scholar 

  36. V.I. Kogan, Zh. Tekh. Fiz., 33:371 (1963) [Sov. Phys.’ Tech. Phys., 8(3):273 (1963)].

    Google Scholar 

  37. L. L. Gorelik, Zh. Tekh. Fiz., 34:496 (1964) [Sov. Phys.’ Tech. Phys., 9(3):386(1964)].

    Google Scholar 

  38. L.L. Gorelik and V. I. Sinitsyn, Zh. Tekh. Fiz., 34:505 (1964) [Sov. Phys.-Tech. Phys., 9(3):393 (1964)].

    Google Scholar 

  39. L. L. Gorelik, et al., Dokl. Akad. Nauk SSSR, 147:576 (1962) [Sov. Phys.-Dokl., 7(ll):1021 (1963)].

    Google Scholar 

  40. Yu. G. Prokhorov, et al., in: Plasma Diagnostics [in Russian], Gosatomizdat, Moscow, 1963, p. 274.

    Google Scholar 

  41. P. Raynolds and J. D. Graggs, Philos. Mag., 43:285 (1952).

    Google Scholar 

  42. I. M. Podgornyi and S.A. Chuvatin, Dokl. Akad. Nauk SSSR, 117:795 (1957) [Sov. Phys.-Dokl., 2(6):543 (1957)].

    Google Scholar 

  43. M. V. Babykin, et al., Zh. Eksp. Teor. Fiz., 47:1597 (1964) [Sov.Phys.’ JETP, 20(4):1073 (1965)].

    Google Scholar 

  44. U. Grossman-Doerth and J. Junker, Nucl. Fusion, Suppl. III, 107 (1962).

    Google Scholar 

  45. B. A. Demidov and S. D. Fanchenko, Zh. Tekh. Fiz., 36:1166 (1966) [Sov. Phys. — Tech. Phys., 11(7):863 (1967)].

    Google Scholar 

  46. W. G. Cross, Phys. Rev., 78:185 (1950).

    Article  ADS  Google Scholar 

  47. I. Alexseff, et al., Phys. Rev. Lett., 10:273 (1963).

    Article  ADS  Google Scholar 

  48. O. A. Anderson, V. R. Beker, and S. A. Kolgeit, Report at the 3rd International Conference on Gas Discharges, Venice, 1957.

    Google Scholar 

  49. V. D. Demichev and Yu. G. Prokhorov, in: Plasma Physics and the Problem of a Controlled Thermonuclear Reaction, Pergamon, New York, 1958, Vol. 4.

    Google Scholar 

  50. N. G. Koval’skii, I. M. Podgornyi, and S. Khvashchevskii, Zh. Eksp. Teor. Fiz., 35:940 (1958) [Sov. Phys. — JETP, 8(4):656 (1959)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Podgornyi, I.M. (1971). Particle Methods for Plasma Diagnostics. In: Topics in Plasma Diagnostics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0724-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0724-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0726-6

  • Online ISBN: 978-1-4684-0724-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics