Skip to main content

Oocyte Growth and Vitellogenesis

  • Chapter
Oocyte Growth and Maturation

Abstract

In the last few years, due to the advances made in biochemistry, electron microscopy, and cytochemistry, a functional approach to the solution of a number of problems regarding the biology of development has become possible. One of these problems is the development of the organization of the mature egg. It is impossible to solve this problem without a knowledge of the mechanisms involved in the enormous growth of oocytes, which is linked with the accumulation in them of a large quantity of ribosomes and yolk intended for the future embryo.

“...The formation of the ovum is not just the prelude to development, but is development itself, and a very responsible part of it at that — when the very foundations of the promorphological organization of the egg are laid, the very architectural plan of the future individual...”

B. L. Astaurov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenshtadt, T. B., 1964, “Cytological studies in oogenesis. I. Morphology of the gonad of Glossiphonia complanata L. examined by light and electron microscope, Tsitologiya, 6, 19–24.

    Google Scholar 

  • Aizenshtadt, T. B., 1969, “Cytomorphological research into the follicles in the ovary of cuttlefish. I. The fine structure of the cells of the follicle epithelium,” Tsitologiya, 11, 401–409.

    CAS  Google Scholar 

  • Aizenshtadt, T. B., 1971, “Cytomorphological research into the follicles in the ovary of cuttlefish. II. The secretory function of the follicle epithelium,” Tsitologiya, 13, 956–964.

    CAS  Google Scholar 

  • Aizenshtadt, T. B., 1974, “Investigation of oogenesis in Hydra. I. Ultrastructure of interstitial cells at early stages of their transformation into oocytes,” Ontogenez, 5, 9–18.

    Google Scholar 

  • Aizenshtadt, T. B., and Dettlaff, T. A., 1972, “Ultrastructure of stellate sturgeon oocytes during maturation. I. Annulate lamellae and Golgi complex,” Ontogenez, 3, 220–229.

    CAS  Google Scholar 

  • Aizenshtadt, T. B., and Korotkova, G. P., 1976, “A study of oogenesis in the marine sponge Halisarca dujardini. II. Phagocytic activity of the oocytes and vitellogenesis,” Tsitologiya, 18, 818–822.

    Google Scholar 

  • Aizenshtadt, T. B., and Marshak, T. L., 1969, “Cytophotometric research on DNA in the nuclei of the accessory cells in the ovaries of some invertebrates,” Arkh. Anat., Gistol. Embryol., 56, 15–21.

    CAS  Google Scholar 

  • Aizenshtadt, T. B., and Marshak, T. L., 1974, “Investigation of oogenesis in Hydra. II. Cytophotometric determination of DNA content in nuclei of germ and somatic cells,” Ontogenez, 5, 394–401.

    Google Scholar 

  • Aízenshtadt, T. B., Brodsky, V. Ya., and Ivanova, S. N., 1964, “Cytological studies on oogenesis. II. A cytochemical examination of the oocyte growth in Glossiphonia complanata L. by cytophotometry and interference microscopy,” Tsitologiya, 6, 77–81.

    Google Scholar 

  • Aizenshtadt, T. B., Brodsky, V. Ya., and Gazaryan, K. G., 1967, “An autoradiographic study of the RNA and protein synthesis in gonads of animals with different types of oogenesis,” Tsitologiya, 9, 397–406.

    CAS  Google Scholar 

  • Allen, E. R., and Cave, M. D., 1968, “Formation, transport, and storage of ribonucleic acid-containing structures in oocytes of Acheta domesticus (Orthoptera),” Z. Zellforsch., 92, 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Alov, I. A., Braude, A. I., and Aspiz, M. E., 1969, The Bases of the Functional Morphology of a Cell [in Russian], Meditsina, Moscow.

    Google Scholar 

  • Anderson, E., 1964, “Oocyte differentiation and vitellogenesis in the roach Periplaneta americana, J. Cell Biol., 20, 131–135.

    Google Scholar 

  • Anderson, E., 1968, “Cortical alveoli formation and vitellogenesis during oocyte differentiation in the pipefish Synganthus fuscus, and the killifish Fundulus heteroclitus, J. Morphol., 125, 23–59.

    Google Scholar 

  • Anderson, E., 1969a, “Oocyte-follicle cell differentiation in two species of amphineurans (Mollusca), Mopalia mucosa and Chaetopleura apiculata, J. Morphol., 129, 89–125.

    Google Scholar 

  • Anderson, E., 1969b, “Oogenesis in the cockroach Periplaneta americana, with special reference to the specialization of the oolemma and fate of coated vesicles,” J. Microsc., 8, 721–738.

    Google Scholar 

  • Anderson, E., and Beams, H. W., 1960, “Cytological observations on the fine structure of the guinea pig ovary with special reference to the oogonium, primary oocyte, and associated follicle cells,” J. Ultrastruct. Res., 3, 432–446.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, E., and Huebner, E., 1968, “Development of the oocyte and its accessory cells of the polychaete Diopatra cuprea (Bosc),” J. Morphol., 26, 163–198.

    Article  Google Scholar 

  • Anderson, L. M., 1971, “Protein synthesis and uptake by isolated Cecropia oocytes,” J. Cell Sci., 8, 735–750.

    PubMed  CAS  Google Scholar 

  • Anderson, L. M., and Telfer, W. H., 1969, “A follicle cell contribution to the yolk spheres of moth oocytes,” Tissue Cell, 1, 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, W. A., and Spielman, A., 1971, “Permeability of the ovarian follicle of Aedes aegypti mosquitoes,” J. Cell Biol., 50, 201–221.

    Article  PubMed  CAS  Google Scholar 

  • Anteunis, A., Fautrez-Firlefyn, N., Fautrez, J., and Lagasse, A., 1964, “L’ultrastructure du noyau vitellin de l’oeuf d’Artemia saliva, Exp. Cell Res., 35, 239–247.

    Google Scholar 

  • Astaurov, B. L., 1948, “The significance of experiments on merogonia and androgenesis for the theory of development and heredity,” Usp. Sovrem. Biol., 25, 48–88.

    Google Scholar 

  • Bast, R. E., and Telfer, W. H., 1976, “Follicle cell protein synthesis and its contribution to the yolk of the Cecropia moth oocyte,” Dev. Biol., 52, 83–97.

    Article  PubMed  CAS  Google Scholar 

  • Beams, H. W., and Kessel, R. G., 1963, “Electron microscope studies on developing crayfish oocytes with special reference to the origin of yolk,” J. Cell Biol., 18, 621–649.

    Article  PubMed  CAS  Google Scholar 

  • Beams, H. W., and Kessel, R. G., 1968, “The Golgi apparatus: structure and functions,” Int. Rev. Cytol., 23, 209–276.

    Article  PubMed  CAS  Google Scholar 

  • Beams, H. W., and Kessel, R. G., 1973, “Oocyte structure and early vitellogenesis in the trout Salmo gairdneri, Am. J. Anat., 136 105–120.

    Google Scholar 

  • Beams, H. W., and Sekhon, S. S., 1966, “Electron microscope studies on the oocyte of the freshwater mussel Anodonta with special reference to the stalk and mechanism of yolk deposition,” J. Morphol., 119, 477–501.

    Article  PubMed  CAS  Google Scholar 

  • Bedford, L., 1966, “The electron microscopy and cytochemistry of oogenesis and the cytochemistry of embryonic development of the prosobranch gastropod Bembicium nanum L.,” J. Embryol. Exp. Morphol., 15, 15–37.

    PubMed  CAS  Google Scholar 

  • Bell, W. J., 1969, “The dual role of juvenile hormone in the control of yolk formation in Periplaneta americana, J. Insect Physiol., 15, 1279–1290.

    Google Scholar 

  • Bellairs, R., 1965, “The relationship between oocyte and follicle in the hen’s ovary as shown by electron microscopy,” J. Embryol. Exp. Morphol., 13, 215–233.

    PubMed  CAS  Google Scholar 

  • Biemont, J. C., 1979, “Vitellogenesis in Acanthoscelides obtectus (Coleoptera, Bruchidae). I. Oocyte development and vitellogenesis in a European strain,” Int. J. Invert. Re-prod., 1, 221–232.

    Google Scholar 

  • Bier, K., 1962, “Autoradiographische Untersuchungen zur Dotterbildung,” Naturwissenschaften, 49, 332–333.

    Article  Google Scholar 

  • Bier, K., 1963a, “Autoradiographische Untersuchungen uber die Leistungen des Follikelepithels un der Nahrzellen bei der Dotterbildung und Eiweissynthese im Fliegenovar,” W. Roux’ Arch. Entwicklungsmech. Org., 154, 552–575.

    Article  Google Scholar 

  • Bier, K., 1963b, “Synthese, interzellularer Transport und Abbau von Ribonucleinsäure im Ovar der Stubenfliege Musca domestica, J. Cell Biol., 16, 436–440.

    Google Scholar 

  • Bier, K., 1964, “Gerichteter Ribonukleinsäuretransport durch das Cytoplasma,” Naturwissenschaften, 51, 418–438.

    Article  CAS  Google Scholar 

  • Bier, K., 1970, “Oogenesetypen bei Insekten und Vertebrate, ihre Bedeutung für die Embryogenese und Phylogenese,” Zool Anz., Suppl., 33, 7–29.

    Google Scholar 

  • Bier, K., Kunz, W., and Ribbert D., 1969, “Insect oogenesis with and without lampbrush chromosomes,” Chromosomes Today, 2, 107–115.

    Google Scholar 

  • Bluemink J..G., 1969, “Are yolk granules related to lysosomes?” Zeiss Inform., 73, 95–99.

    Google Scholar 

  • Boctor, F. N., and Kamel, M. Y., 1976, “Purification and characterization of two lipovitellins from eggs of the tick Dermacentor andersoni, Insect. Biochem., 6, 233–240.

    Google Scholar 

  • Bottke, W., 1972, “Zur Morphologie des Ovars von Viviparus contectus (Millet 1813) (Gastropoda, Prosobranchia). I. Die Follikelzellen,” Z. Zellforsch., 133, 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Bou-Resli, M., 1974, “Ultrastructural studies on the intercellular bridges between the oocyte and follicle cell in the lizard Acanthodactylus scutellatus Hardyi,” Z. Anat. Entwick lungsgesch., 143, 239–254.

    Article  CAS  Google Scholar 

  • Bownes, M., 1980, “The use of yolk protein variations in Drosophila species to analyze the control of vitellogenesis,” Differentiation, 16, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, B. C., 1972, “Ultrastructural studies of differentiation in the oocyte of the polyclad turbellarian Prostheceraeus floridanus, J. Morphol., 136, 273–294.

    Google Scholar 

  • Brookes, V. J., 1969, “The maturation of the oocytes in the isolated abdomen of Leucophaea maderae, J. Insect Physiol., 15, 621–631.

    Google Scholar 

  • Brown, D. D., and Dawid, I. B., 1969, “Development genetics,” Annu. Rev. Genet., 3, 127–154.

    Article  CAS  Google Scholar 

  • Brown, E. H., and King, R. C., 1964, “Studies on the events resulting in the formation of an egg chamber in Drosophila melanogaster, Growth, 28, 41–48.

    Google Scholar 

  • Buckley, S. K. L., 1976, “Octopus gonadotropin and its role in the regulation of egg development,” Colloq. Int. CNRS, 251, 161–167.

    Google Scholar 

  • Bühlmann, G., 1974, “Vitellogenin in adulten Weibchen der Schabe Nauphoeta cinerea. Immunologische Untersuchungen uber Herkunft und Einbau,” Rev. Suisse Zool., 81, 642–647.

    PubMed  Google Scholar 

  • Büning, J., 1972, “Untersuchungen am Ovar von Bruchidiusobtectus Say. (Coleoptera — Polyphaga) zur Klärung des Oocytenwachstums in der Pravitellogenese,” Z. Zellforsch., 128, 241–282.

    Article  PubMed  Google Scholar 

  • Carasso, N., Ovtracht, L., and Favard, P., 1971, “Observation en microscopie électronique haute tension, de l’appareil de Golgi sur coupes de 0.5 a 5 p d’épaisseur,” C. R. Acad. Sci. Paris, D273, 876–879.

    CAS  Google Scholar 

  • Cave, M. D., 1975, “Absence of ribosomal DNA amplification in the meroistic (telotrophic) ovary of the large milkweed bug Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae),” J. Cell Biol., 66, 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Charniaux-Cotton, H., 1973, “Introduction a l’ovogenèse chez les invertébres,” Ann. Biol. Anim., Biochim., Biophys., 13, 13–19.

    Article  Google Scholar 

  • Chmilevsky, D. A., 1970, “Synthesis of DNA in early oogenesis of the ruff Acerina cernua L.,” Tsitologiya, 12, 675–678.

    Google Scholar 

  • Chmilevsky, D. A., 1972, “Peculiarities of protein and polysaccharide synthesis in developing oocytes of the ruff,” Tsitologiya, 14, 277–283.

    Google Scholar 

  • Clavert, J., 1958, “Contribution à l’étude de la vitellogenèse chez les oiseaux. Phases physiologiques et rôle de la folliculine dans la vitellogenèse,” Arch. Anat. Microsc. Morphol. Exp., 47, 653–675.

    CAS  Google Scholar 

  • Coggins, L. W., 1973, “An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis, J. Cell Sci., 12, 71–93.

    Google Scholar 

  • Croisille, G., Junera, H., Meusy, J., and Charniaux-Cotton, H., 1974, “The female-specific protein (vitellogenic protein) in crustacea with particular reference to Orchestia gammarella (Amphipoda),” Am. Zool., 14, 1219–1228.

    CAS  Google Scholar 

  • Cummings, M. R., and King, R. C., 1970, “The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster. II. Ultrastructural investigations on the origin of protein yolk spheres,” J. Morphol., 130, 467–478.

    Article  Google Scholar 

  • Cutting, J. A., and Roth, T. F., 1973, “Changes in specific sequestration of protein during transport into the developing oocyte of the chicken,” Biochim. Biophys. Acta, 298, 951–955.

    Article  PubMed  CAS  Google Scholar 

  • Davey, K. G., 1981, “Hormonal control of vitellogenin uptake in Rhodnius prolixus Stäl,” Am. Zool., 21, 701–705.

    CAS  Google Scholar 

  • Davey, K. G., and Huebner, E., 1974, “The response of the follicle cells of Rhodnius prolixus to juvenile hormone and antigonadotropin in vitro,” Can. J. Zool., 52, 1407–1412.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. H., 1969, Gene Activity in Early Development, Academic Press, New York-London.

    Google Scholar 

  • Davis, G. C., and Wilt, F. H., 1972, “RNA synthesis during oogenesis in the echiuroid worm Urechis caupo, Dev. Biol., 27, 1–12.

    Google Scholar 

  • Dehn, P. F., and Wallace, R. A., 1973, “Sequestered and injected vitellogenin. Alternative routes of protein processing in Xenopus oocyte,” J. Cell Biol., 58, 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Dejmal, R. K., and Brookes, V. J., 1972, “Insect lipovitellin: chemical and physical characteristics of a yolk protein from the ovaries of Leucophaea maderae, J. Biol. Chem., 247, 869874.

    Google Scholar 

  • Dhainaut, A., 1967, “Étude de la vitellogenèse chez Nereis diversicolor 0. F. Müller (annélide polychète) par autoradiographie à haute résolution,” C. R. Acad. Sci. Paris, D265, 434–436.

    CAS  Google Scholar 

  • Diehl, P. A., 1970, “Zur Oogenese bei Ornithodorus moubata Murray (Ixodoidea: Argasidae) unter besonderer Berucksichtigung des Vitellogenese,” Acta Trop., 27, 301–355.

    PubMed  CAS  Google Scholar 

  • Dolphin, P. J., Ansari, A. Q., Lazier, C. B., Munday, K. A., and Akhtar, M., 1971, “Studies on the induction and biosynthesis of vitellogen, an estrogen-induced glycolipophosphoprotein,” Biochem. J., 124, 751–758.

    PubMed  CAS  Google Scholar 

  • Droller, M. J., and Roth, T. F., 1966, “An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus guppyi,” J. Cell Biol., 28, 209–232.

    Article  PubMed  CAS  Google Scholar 

  • Droz, B., 1966, “Elaboration de glycoproteines dans l’appareil de Golgi des cellules hépatiques chez le rat; étude radioautographique en microscopie electronique après injection de galactose-3H,” C. R. Acad. Sci. Paris, D262, 1766–1768.

    CAS  Google Scholar 

  • Dumont, J. N., 1967, “Oocyte differentiation in the annelid Enchytraeus albidus, J. Cell Biol., 35, Pt. 2, 35A.

    Google Scholar 

  • Dumont, J. N., 1969, “Oogenesis in the annelid Enchytraeus albidus with special reference to the origin and cytochemistry of yolk,” J. Morphol., 129, 317–343.

    Article  Google Scholar 

  • Dumont, J. N., and Anderson, E., 1967, “Vitellogenesis in the horseshoe crab Limulus polyphemus, J. Microsc., 6, 791–806.

    Google Scholar 

  • Dumont, J. N., and Wallace, R. A., 1972, “The effects of vinblastine on isolated Xenopus oocytes,” J. Cell Biol., 53, 605–610.

    Article  PubMed  CAS  Google Scholar 

  • Durchon, M., 1975, “Modalités du déterminisme hormonal de la maturation sexuelle chez les Nereidiens (Annélides, Polychètes), ” Pubbl. Staz. Zool. Napoli, 39, Suppl. 1, 510–531.

    Google Scholar 

  • Eckelbarger, K. J., 1975, “A light and electron microscope investigation of gametogenesis in Nicolea zostericola (Polychaeta: Terebellidae),” Mar. Biol., 30, 353–370.

    Article  Google Scholar 

  • Engelman, F., 1970, The Physiology of Insect Reproduction, Pergamon Press, Oxford.

    Google Scholar 

  • Engels, W., 1973, “Das zeitliche und räumliche Muster der Dottereinlagerung in die Oocyte von Apis mellifica, Z. Zellforsch., 142, 409–430.

    Google Scholar 

  • Favard, P., 1969, “The Golgi apparatus,” in: Handbook of Molecular Cytology, Vol. 15, A. Lima-de-Faria (ed.), Elsevier, Amsterdam-London, pp. 1131–1155.

    Google Scholar 

  • Favard, P., and Carasso, N., 1958, “Origine et ultrastructure des plaguettes vitellines de la Planorbe,” Arch. Anat., Microsc. Morphol., 47, 211–229.

    CAS  Google Scholar 

  • Filosa, S., and Taddei, lizard oogenesis,“ C., Cell 1976, ”Intercellular bridges in Differ., 5, 199–206.

    Google Scholar 

  • Filosa, S., Taddei, C., and Andreuccetti, P., 1979, “The differentiation and proliferation of follicle cells during oocyte growth in Lacerta sicula, J. Embryol. Exp. Morphol., 54, 5–51.

    Google Scholar 

  • Fischer, A., 1975, “The structure of symplasmic early oocytes and their enveloping sheath cells in the polychaete Platynereis dumerilli,” Cell Tissue Res., 160, 327–343.

    CAS  Google Scholar 

  • Flickinger, Ch. J., 1971, “Alterations in the Golgi apparatus of amoeba in the presence of an inhibitor of protein synthesis,” Exp. Cell Res., 68, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Follett, B. K., and Redshaw, M. R., 1974, “The physiology of vitellogenesis,” in: Physiology of Amphibia, Academic Press, New York-London, 2, 219–308.

    Google Scholar 

  • Follett, B. K., Nicholls, T. J., and Redshaw, M. R., 1968, “The vitellogenic response in the South African clawed toad (Xenopus laevis, Daudin),” J. Cell Physiol., 72, Suppl., 91102.

    Google Scholar 

  • Franchi, L. L., and Mandl, A. M., 1962, “The ultrastructure of oogonia and oocytes in the fetal and neonatal rat,” Proc. R. Soc. London, B157, 99–114.

    Article  Google Scholar 

  • Frey-Wyssling, A., 1973, Comparative Organellography of the Cytoplasm, Springer Verlag, Wien-New York.

    Google Scholar 

  • Fujitani, N., 1961, “Cytological and cytochemical investigations on the rabbit ova during oogenesis and fertilization,” Bull. Exp. Biol., 10, 5–22.

    Google Scholar 

  • Gabaeva, N. S., 1970, “Comparative histology of the follicle epithelium in a number of vertebrates,” Arkh. Anat., Gistol. Embriol., 58, 20–37.

    CAS  Google Scholar 

  • Gabaeva, N. S., 1980, “On regular patterns of histogenesis of the ovary follicular epithelia in a phylogenetical sequence of vertebrates,” Arkh. Anat., Gistol. Embriol., 79, 18–35.

    CAS  Google Scholar 

  • Gabaeva, N. S., Levai, I. V., and Tumanova, N. L., 1971, “On the ingrowth of the follicle epithelium in the oocytes of some rock lizards,” Arkh. Anat., Gistol. Embriol., 60, 4549

    Google Scholar 

  • Gaginskaya, E. R., and Gruzova, M. N., 1969, “Peculiarities of the oogenesis of Fringilla (Ayes),” Tsitologiya, 11, 1241–1251.

    CAS  Google Scholar 

  • Gall, J. G., 1969, “The genes for ribosomal RNA during oogenesis,” Genetics, 61, Suppl., 121–132.

    Google Scholar 

  • Ganion, L. R., and Kessel, R. G., 1972, “lntracellular synthesis, transport, and packaging of proteinaceous yolk in oocytes of Orconectes immunis., J. Cell Biol., 52, 420–437.

    Google Scholar 

  • Condos, B., 1973, “Germ cell degeneration and intercellular bridges in the human fetal ovary,” Z. Zellforsch., 138, 1, 23–30.

    Article  Google Scholar 

  • Greenfield, M. L., 1966, “The oocyte of the domestic chicken shortly after hatching, studied by electron microscopy,” J. Embryol. Exp. Morphol., 15, 297–316.

    PubMed  CAS  Google Scholar 

  • Gruzova, M. N., and Zaichikova, P., 1967, “The karyosphere in oogenesis of the leech Glossiphonia complanata,” Tsitologiya, 9, 388–396.

    Google Scholar 

  • Gruzova, M. N., Zaichikova, Z. P., and Sokolov, I. I., 1972, “The structural and functional organization of the oocyte nucleus of Chrysopa (Neuroptera). I. The nucleolar apparatus and extrachromosomal DNA,” Tsitologiya, 14, 269–276.

    Google Scholar 

  • Guraya, S. S., 1968, “Cytochemistry of yolk elements in the egg of the tunicate Molgula,” Z. Zellforsch., 86, 505–510.

    Google Scholar 

  • Guraya, S. S., 1975, “Histochemical observations of the juxtanuclear complex of organelles in the hamster oocyte,” Acta Anat., 93, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Gureeva, M. A., 1972, “’Sorites’ and oogenesis in endemic Baikal sponges,” Tsitologiya, 14, 32–45.

    CAS  Google Scholar 

  • Hagedorn, H. H., 1974, “The control of vitellogenesis in the mosquito Aedes aegypti,” Am. Zool., 14, 1207–1217.

    Google Scholar 

  • Hagedorn, H. H., O’Connor, J. D., Fuchs, M. S., Sage, B., Schlaeger, D. A., and Bohm, M. K., 1975, “The ovary as a source of a-ecdysone in an adult mosquito,” Proc. Natl. Acad. Sci. USA, 72, 3255–3259.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg, R. L., and Smith, D. C., 1975, “Ribosomal protein synthesis in Xenopus laevis oocytes,” Dev. Biol., 42, 40–52.

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka, K., and Hagedorn, H. H., 1980, “Brain hormone control of ecdysone secretion by the ovary in a mosquito,” in: Progress in Ecdysone Research, J. A. Hoffmann (ed.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 467–480.

    Google Scholar 

  • Handler, A. M., and Postlethwait, J. H., 1977, “Endocrine control of vitellogenesis in Drosophila melanogaster: effects of the brain and corpus allatum,” J. Exp. Zool., 202, 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Handler, A. M., and Postlethwait, J. H., 1978, “Regulation of vitellogenin synthesis in Drosophila by ecdysterone and juvenile hormone,” J. Exp. Zool., 206, 247–257.

    Article  CAS  Google Scholar 

  • Hausman, S. J., Anderson, L. M., and Telfer, W. A., 1971, “The dependence of cecropia yolk formation in vitro on specific blood proteins,” J. Cell Biol., 48, 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, M. A., and Shapiro, D. J., 1981, “A middle-affinity estrogen-specific binding protein in livers of vitellogenic and nonvitellogenic Xenopus laevis,” Dev. Biol., 88 333340.

    Google Scholar 

  • Heald, P. J., and McLachlan, P. M., 1965, “The synthesis of phosvitin in vitro by slices of liver from the laying hen,” Biochem. J., 94, 32–39.

    PubMed  CAS  Google Scholar 

  • Heesen, D., and Engels, W., 1973, “Elektrophoretische Untersuchungen zur Vitellogenese von Brachydanio rerío (Cyprinida, Teleostei),” W. Roux’ Arch. Entwicklungsmech. Org., 173, 46–59.

    Article  Google Scholar 

  • Hertig, A. T., 1968, “The primary human oocyte: some observations on the fine structure of Balbiani’s vitelline body and the origin of the annulate lamellae,” Am. J. Anat., 122, 107–137.

    Article  PubMed  CAS  Google Scholar 

  • Hertig, A. T., and Adams, E. C., 1967, “Studies on the human oocyte and its follicles. I. Ultrastructural and histochemical observations on the primordial follicle stage,” J. Cell Biol., 34, 647–675.

    Article  PubMed  CAS  Google Scholar 

  • Highnam, K. C., Lusis, O., and Hill, L., 1963, “The role of the corpora allata during oocyte growth in the desert locust Schístocerca gregarina Forsk,” J. Insect Physiol., 9, 587596.

    Google Scholar 

  • Hinsch, G. W., and Cone, M. V., 1969, “Ultrastructural observations of vitellogenesis in the spider crab Libinia emarginata L.,” J. Cell Biol., 40, 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, K., 1971, “The ultrastructure of the ovarian follicle of medaka, Oryzias latípes,” Z. Zellforsch., 123, 316–329.

    Google Scholar 

  • Holland, Ch. A., and Dumont, J. N., 1975, “Oogenesis in Xenopus laevis (Daudin). IV. Effects of gonadotrophin, estrogen, and starvation on endocytosis in developing oocytes,” Cell Tissue Res., 162, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Holland, N. D., 1976, “The fine structure of the yolk nucleus in oocytes of Antedon bifida (Pennant) (Echinodermata: Crinoidea),” J. Mar. Biol. Assoc. U.K., 56, 59–63.

    Article  Google Scholar 

  • Hope, J., 1965, “The fine structure of the developing follicle of the rhesus ovary,” J. Ultrastruct. Res., 12, 592–610.

    Article  PubMed  CAS  Google Scholar 

  • Hope, J., Humphries, A. A., and Bourne, G. H., 1963, “Ultrastructural studies on developing oocytes of the salamander Triturus virídescens. I. The relationship between follicle cells and developing oocytes,” J. Ultrastruct. Res., 9, 302–324.

    Article  Google Scholar 

  • Hoser, P., 1975, “The cytology and cytochemistry of extrachromosomal DNA in oogenesis of beetles of the family Gyrinidae (Coleoptera),” Folia Histochem. Cytochem., 13, 102–103.

    Google Scholar 

  • Hubert, J., 1970, “Données preliminaires sur l’ultrastructure des ovocytes et du follicule ovarien chez le lézard vivipare (Lacerta vivipara Jacquin) quelques mois après la naissance,” C. R. Acad. Sci. Paris, D270, 2674–2677.

    CAS  Google Scholar 

  • Hubert, J., 1971, “Aspects ultrastructuraux des relations entre les couches folliculaires et l’ovocyte depuis la formation du follicule jusqu’au début de la vitellogenèse chez le lézard Lacerta vivipara Jacquin,” Z. Zellforsch., 116, 240–249.

    Google Scholar 

  • Heubner, E., and Anderson, E., 1972, “A cytological study of the ovary of Rhodnius prolixus. II. Oocyte differentiation,” J. Morphol., 137, 385–415.

    Article  Google Scholar 

  • Hughes, M., and Berry, S. J., 1970, “The synthesis and secretion of ribosomes by nurse cells of Antheraea polyphemus,” Dev. Biol., 23, 651–664.

    Google Scholar 

  • Jacob, J., and Sirlin, J. L., 1959, “Cell function in the ovary of Drosophila. I. DNA classes in nurse cell nuclei as determined by autoradiography,” Chromosoma, 10, 210–228.

    Article  PubMed  CAS  Google Scholar 

  • Jalaja, M., 1974, “Complete inhibition of vitellogenesis after extirpation of median neurosecretory cells in Dysdercus cingulatus,” Curr. Sci., 43, 286–287.

    Google Scholar 

  • Jamieson, J. D., and Palade, G. E., 1971, “Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells,” J. Cell Biol., 50, 135–158.

    Article  PubMed  CAS  Google Scholar 

  • Jared, D. W., and Wallace, R. A., 1969, “Protein uptake in vitro by amphibian oocytes,” Exp. Cell Res., 57, 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T. H., and Kay, H. D., 1932, quoted from T. P. Roth and K. R. Porter, 1964. Kalt, M., 1963, “Cytoplasmic transmission of a vanadium compound in a tunicate oocyte, visible with electron microscopy,” Acta Embryol. Morphol. Exp., 6, 289–303.

    Google Scholar 

  • Kalt, M. R., 1972, “Germ cell development and premeiotic rDNA amplification in Xenopus laevis,” J. Cell Biol., 55, Pt. 2, 128A.

    Google Scholar 

  • Kanaev, I. I., 1952, Hydra [in Russian], Izd. Akad. Nauk SSSR, Moscow—Leningrad.

    Google Scholar 

  • Karasaki, S., 1963a, “Studies on amphibian yolk. 1. The ultrastructure of the yolk platelet,” J. Cell Biol., 18, 135–151.

    Article  PubMed  CAS  Google Scholar 

  • Karasaki, S., 1963b, “Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis,” J. Ultrastruct. Res., 18, 225–247.

    Article  Google Scholar 

  • Karasaki, S., 1967, “An electron microscope study on the crystalline structure of the yolk platelets of the lamprey egg,” J. Ultrastruct. Res., 18, 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Karasaki, S., and Komoda, T., 1958, “Electron micrographs of a crystalline lattice structure in yolk platelets of the amphibian embryo,” Nature (London), 181, 407–408.

    Article  CAS  Google Scholar 

  • Kato, K., 1968, “Cytochemistry and fine structure of elimination chromatin in Dytiscidae,” Exp. Cell Res., 52, 507–522.

    Google Scholar 

  • Kerr, M. S., 1969, “The hemolymph proteins of the blue crab Callinectes spidus. II. A lipoprotein serologically identical to oocyte lipovitellin,” Dev. Biol., 20, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, R. G., 1966a, “Some observations on the ultrastructure of the oocyte of Thyone briareus with special reference to the relationship of the Golgi complex and endoplasmic reticulum in the formation of yolk,” J. Ultrastruct. Res., 16, 305–319.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, R. G., 1966b, “Electron microscope studies on the origin and maturation of yolk in oocytes of the tunicate Ciona intestinalis,” Z. Zellforsch., 71, 525–544.

    Google Scholar 

  • Kessel, R. G., 1968a, “Electron microscope studies on developing oocytes of a coelenterate medusa with special reference to vitellogenesis,” J. Morphol., 126, 211–248.

    Article  Google Scholar 

  • Kessel, R. G., 1968b, “Mechanisms of protein yolk synthesis and deposition in crustacean oocytes,” Z. Zellforsch., 89, 17–38.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, R. G., 1968c, “Annulate lamellae,” J. Ultrastruct. Res., Suppl. 10, 1–82.

    CAS  Google Scholar 

  • Kessel, R. G., 1968d, “An electron microscope study of differentiation and growth in oocytes of Ophioderma panamensis,” J. Ultrastruct. Res., 22, 63–89.

    Google Scholar 

  • Kessel, R. G., 1971, “Cytodifferentiation in the Rana pipiens oocyte. II. Intramitochondrial yolk,” Z. Zellforsch., 112, 313–332.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, R. G., and Beams, H. W., 1969, “Annulate lamellae and ‘yolk nuclei’ in oocytes of the dragonfly Libellula pulchella,” J. Cell Biol., 42, 185–201.

    Google Scholar 

  • Kessel, R. G., and Kemp, N. E., 1962, “An electron microscope study on the oocyte, test cells, and follicular envelope of the tunicate, Molgula manhattensis,” J. Ultrastruct. Res., 57–76.

    Google Scholar 

  • Kessel, R. G., and Panje, W. R., 1968, “Organization and activity in the pre-and postovulatory follicle of Necturus maculosus,” J. Cell Biol., 39 1–34.

    Google Scholar 

  • King, R. C., 1974, “insect gametogenesis,” J. Med. Entomol., 11, 1–7.

    PubMed  CAS  Google Scholar 

  • King, R. C., 1975, “The cell cycle and cell differentiation in the Drosophila ovary,” in: Results and Problems in Cell Differentiation, Vol. 7, Springer-Verlag, Berlin—HeidelbergNew York, pp. 85–109.

    Google Scholar 

  • King, R. C., and Aggarwal, S. K., 1965, “Oogenesis in Hyalophora cecropia,” Growth, 29, 17–83.

    Google Scholar 

  • Knight, P. F., and Schechtman, A. M., 1954, “The passage of heterologous serum proteins from the circulation into the ovum of the fowl,” J. Exp. Zool., 127, 271–304.

    Article  Google Scholar 

  • Koch, E. A., and King, R. C., 1966, “The origin and early differentiation of the egg chamber of Drosophila melanogaster,” J. Morphol., 119, 283–303.

    Google Scholar 

  • Koch, E. A., Smith, P. A., and King, R. C., 1967, “The division and differentiation of Drosophila cystocytes,” J. Morphol., 121, 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Koeppe, J. K., Hobson, K., and Wellman, S. E., 1980, “Juvenile hormone regulation of structural changes and DNA synthesis in the follicular epithelium of Leucophaea maderae,” J. Insect Physiol., 26, 229–240.

    Google Scholar 

  • Korfsmeier, K. H., 1966, “Zur Genese des Dottersystems in der Oocyte von Brachydanio rerio. Autoradiographische Untersuchungen,” Z. Zellforsch., 71, 283–296.

    Article  CAS  Google Scholar 

  • Korotkova, G. P., and Aizenshtadt, T. B., 1976, “Research on oogenesis in the marine sponge Halisarca dujardini. Origin of the oogonia and the early stages of development in oocytes,” Tsitologiya, 18, 549–555.

    Google Scholar 

  • Kress, A., and Spornitz, U. M., “Ultrastructural studies of oogenesis in some European amphibiana. I. Rana esculenta and Rana temporaria,” Z. Zellforsch., 128, 438–456.

    Google Scholar 

  • Kunz, W., 1969, “Die Entstehung multipler Oocytennukleolen aus akzessorischen DNS-Körpern bei Gryllus domestícus,” Chromo-soma, 26 41–75.

    Google Scholar 

  • Kurosumi, K., 1961, “Electron microscopic analysis of the secretion mechanism,” Int. Rev. Cytol., 11, 1–124.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia, G., 1961, “The formation of the yolk in frog oocytes, ” Proc. Eur. Regional Conf. Electron Microsc., Vol. 2, Delft, p. 746.

    Google Scholar 

  • Lanzavecchia, G., 1965, “Structure of yolk in Rana esculenta L.,” J. Ultrastruct. Res., 12, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Lanzrein, B., 1974, “Influence of a juvenile hormone analog on vitellogenin synthesis and oogenesis in larvae of Nauphoeta cinerea,” J. Insect Physiol., 20, 1855–1871.

    Google Scholar 

  • Larsen, J. R., and Bodenstein, D., 1959, “The humoral control of egg maturation in the mosquito,” J. Exp. Zool., 140, 343–381.

    Article  PubMed  CAS  Google Scholar 

  • Laverdure, A. M., 1972, “L’évolution de l’ovaire chez la femelle adulte de Tenebria molitor, la vitellogenèse,” J. Insect. Physiol., 18, 1369–1385.

    Article  Google Scholar 

  • Lea, A. O., 1963, “Some relationships between environment, corpora allata, and egg maturation in Aedine mosquitos,” J. Insect Physiol., 9, 793–809.

    Article  Google Scholar 

  • Leblond, C. P., and Bennett, G., 1974, “Elaboration and turnover of cell coat glycoproteins,” in: Cell Surface in Development, Wiley, New York, pp. 29–49.

    Google Scholar 

  • Lender, T., 1965, “Rôle du complexe céphalique au cours de la vitellogenèse de Tenebrio molitor (Coléoptère),” C. R. Acad. Sci. Paris, 261, 557–559.

    CAS  Google Scholar 

  • Leonard, D. A., and LaMarca, M. J., 1975, “In vivo synthesis and turnover of cytoplasmic ribosomal RNA by stage 6 oocytes of Xenopus laevis,” Dev. Biol., 45, 199–202.

    Google Scholar 

  • Leonard, R., Deamer, D. W., and Armstrong, P., 1972, “Amphibian yolk platelet ultrastructure visualized by freeze-etching,” J. Ultrastruct. Res., 40, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, W., 1931, “Pinocytosis,” Bull. Johns Hopkins Hospital, 49, 17–23.

    Google Scholar 

  • Limatola, E., Filosa, S., and Ghiara, G., 1972, “Osservazioni sperimentali mediante impiego di perossidasi sui rapporti tra micropinocitosi e vitellogenesi,” Boll. Zool., 39, 631–632.

    Google Scholar 

  • Loof, A., 1971, “Synthesis and deposition of oocyte envelopes in the Colorado beetle Leptinotarsa decemlineata Say,” Z. Zellforsch., 115, 351–360.

    Article  PubMed  Google Scholar 

  • Loof, A., and Lagasse, A., 1970, “Resorption of the terminal oocyte in the allatectomized colorado beetle, Leptinotarsa decemlineata Say,” Proc. Koninkl. Nederl. Akad. Wet., C73, 284–297.

    Google Scholar 

  • Lui, Ch. W., and O’Connor, J. D., 1976, “Biosynthesis of lipovitellin by the crustacean ovary. II. Characterization of and in vitro incorporation of amino acids into the purified subunits,” J. Exp. Zool., 195, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor, H. C., and Stebbings, H., 1970, “A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles,” J. Cell Sci., 6, 431–449.

    PubMed  CAS  Google Scholar 

  • Mahowald, A. P., 1972, “Ultrastructural observations on oogenesis in Drosophila,” J. Morphol., 137, 29–48.

    Google Scholar 

  • Mairy, M., and Denis, H., 1970, “Synthèse et accumulation du RNA pendant l’oogenèse de Xenopus laevis,” Arch. Int. Physiol. Biochim., 78, 599–601.

    Google Scholar 

  • Mancuso, V., 1964, “Ultrastructural changes in the cytoplasm of Ciona intestinalis oocytes,” Acta Embryol. Morphol. Exp., 7, 269–295.

    Google Scholar 

  • Mansueto, C., 1964, “Sulla riproduzione per divisione mitotica delle cellule testali delle ascidie,” Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend., 36, 683–689.

    Google Scholar 

  • Masler, E. P., Fuchs, M. S., Sage, B, and O’Connor, J. D., 1980, “Endocrine regulation of ovarian development in the autogenous mosquito Aedes atropalpus,” Gen. Comp. Endocrinol., 41, 250–259.

    Google Scholar 

  • Massover, W. H., 1971a, “Intramitochondrial yolk-crystals of frog oocytes. I. Formation of yolk-crystal inclusions by mitochondria during bullfrog oogenesis,” J. Cell Biol., 48, 266–279.

    Article  PubMed  CAS  Google Scholar 

  • Massover, W. H., 1971b, “Nascent yolk platelets of anuran amphibian oocytes,” J. Ultrastruct. Res., 37, 574–591.

    Article  PubMed  CAS  Google Scholar 

  • Massover, W. H., 1971c, “Intramitochondrial yolk-crystals of frog oocytes. II. Expulsion of intramitochondrial yolk-crystals to form single membrane bound hexagonal crystalloids,” J. Ultrastruct. Res., 36, 603–620.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., 1965, “Electron microscopic studies on the early developments of various insect eggs. II. On the changes of the nurse cells and the nutritive substances in telotrophic ovaries,” New Entomol., 14, 49–57.

    Google Scholar 

  • Matsuzaki, M., 1975, “Ultrastructural changes in developing oocytes, nurse cells, and follicular cells during oogenesis in the teletrophic ovarioles of Bothrogonia japonica Ishihara (Homoptera, Tettigellidae), Jpn. J. Entomol., 43, 75–90.

    Google Scholar 

  • Matuszewski, B., and Kloc, M., 1976, “Gene amplification in oocytes of the rove beetle Creophilus maxillosus (Staphylinidae Coleoptera Polyphaga),” Experientia, 32, 34–36.

    Article  PubMed  CAS  Google Scholar 

  • May, F. E. B., and Knowland, J., 1981, “Estrogen receptor levels and vitellogenin synthesis during development of Xenopus laevis,” Nature (London), 292 853–855.

    Google Scholar 

  • May, F. E. B., Westley, B. R., and Knowland, J., 1981, “Vitellogenin synthesis and characterization of the liver estrogen receptor in the neotenous salamander Ambystoma mexicanum,” Dev. Biol., 82, 350–357.

    Google Scholar 

  • Melius, M. E., and Telfer, W. H., 1969, “An autoradiographic analysis of yolk deposition in the cortex of the cecropia moth oocyte,” J. Morphol., 129, 1–16.

    Article  Google Scholar 

  • Melton, C. G., and Smorul, R. P., 1974, “Functional volume of frog eggs: equivalence of metabolite diffusion space in chemically demembranated embryos and aqueous phase (non-yolk) volume,” J. Exp. Zool., 187, 239–247.

    Article  Google Scholar 

  • Meusy, J. J., 1980, “Vitellogenin, the extraovarian precursor of the protein yolk in Crustacea: a review,” Reprod., Nutr., Dev., 20, 1–21.

    Article  CAS  Google Scholar 

  • Mills, R. R., Greenslade, F. C., and Couch, E. F., 1966, “Studies on vitellogenesis in the American cockroach,” J. Insect Physiol., 12, 767–779.

    Article  Google Scholar 

  • Morré, D. J., Mollenhauer, H. H., and Bracker, C. E., 1971, “Origin and continuity of Golgi apparatus,” in: Origin and Continuity of Cell Organelles, Vol. 2, Springer-Verlag, Berlin-Heidelberg-New York, pp. 82–126.

    Google Scholar 

  • Mukai, H., and Watanabe, H., 1976, “Studies on the formation of germ cells in a compound ascidian Botryllus primigenus Oka,” J. Morphol., 148, 337–362.

    Article  Google Scholar 

  • Neaves, W. B., 1971, “Intercellular bridges between follicle cells and oocyte in the lizard Anolis carolinensis,” Anat. Rec., 170, 285–302.

    Google Scholar 

  • Neutra, M., and Leblond, C. P., 1966, “Synthesis of the carbohydrate of mucus in the Golgi complex, as shown by electron microscope radioautography of goblet cells from rats injected with glucose-3H,” J. Cell Biol., 30, 119–136.

    Article  PubMed  CAS  Google Scholar 

  • Neutra, M., and Leblond, C. P., 1969, “The Golgi apparatus,” Sci. Am., 220, 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D., and Faber, J., 1956, Normal Table of Xenopus laevis (Daudin), North-Holland, Amsterdam.

    Google Scholar 

  • Norrevang, A., 1968, “Electron microscopic morphology of oogenesis,” Int. Rev. Cytol., 23, 113–186.

    Article  PubMed  CAS  Google Scholar 

  • O’Dor, R. K., and Wells, M. J., 1973, “Yolk protein synthesis in the ovary of Octopus vulgaris and its control by the optic gland gonadotropin,” J. Exp. Biol., 59, 663–674.

    Google Scholar 

  • O’Dor, R. K., and Wells, M. J., 1975, “Control of yolk protein synthesis by Octopus gonadotropin in vivo and in vitro (effects of Octopus gonadotropin),” Gen. Comp. Endocrinol., 27, 129–135.

    Article  PubMed  Google Scholar 

  • O’Dor, R. K., and Wells, M. J., 1978, “Reproduction versus somatic growth: hormonal control in Octopus vulgaris,” J. Exp. Biol., 77, 15–31.

    Google Scholar 

  • Oie, M., Takahashi, S. Y., and Ishizaki, H., 1975, “Vitellogenin in the eggs of the cockroach Blattela germanica: purification and characterization,” Dev., Growth, Differ., 17, 237–246

    Article  CAS  Google Scholar 

  • Olmo, E., and Taddei, C., 1974, “Histophotometric measurements of the DNA content in the ovarian follicle cells of Lacerta sicula Raf.,” Experientia, 30, 1331–1332.

    Article  PubMed  CAS  Google Scholar 

  • Opresko, L., Wiley, H. S., and Wallace, R. A., 1980, “Differential postendocytotic compartmentation in Xenopus oocytes as mediated by a specifically bound ligand,” Cell, 22, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Osaki, H., 1972, “Electron microscope studies on developing oocytes of the spider Plexippus paykulli,” Annot. Zool. Jpn., 45, 187–200.

    Google Scholar 

  • Painter, T. S., and Reindorp, E. C., 1939, “Endomitosis in the nurse cells of the ovary of Drosophila melanogaster.” Chromo-soma, 1, 276–283.

    Google Scholar 

  • Paschma, M., and Ogorzalek, A., 1972, “0 interrelacjach jadrowo-cytoplasma-tycznych w oogenezie,” Prz. Zool., 16, 1120

    Google Scholar 

  • Pasteels, J. J., 1973, “Yolk and lysosomes,” in: Lysosomes in Biology and Pathology, Vol. 3, Elsevier, Amsterdam-LondonNew York, pp. 216–234.

    Google Scholar 

  • Paulson, J. L., and Rosenberg, M. D., 1972, “The function and transposition of lining bodies in developing avian oocytes,” J. Ultrastruct. Res., 40, 25–43.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J. L., and Rosenberg, M. D., 1974, “Formation of lining bodies and oocyte bodies during avian oogenesis,” Dev. Biol., 40, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait, J. H., and Handler, A. M., 1978, “Nonvitellogenic female sterile mutants and the regulation of vitellogenesis in Drosophila melanogaster,” Dey. Biol., 79, 202–213.

    Google Scholar 

  • Postlethwait, J. H., Bownes, M., and Jowett, T., 1980a, “Sexual phenotype and vitellogenin synthesis in Drosophila melanogaster,” Dey. Biol., 79, 379–387.

    Google Scholar 

  • Postlethwait, J. H., Laugé, G., and Handler, A. M., 1980b, “Yolk protein synthesis in ovariectomized and genetically agametic [X87] Drosophila melanogaster,” Gen. Comp. Endocrinol., 40, 385–390.

    Google Scholar 

  • Press, N., 1964, “An unusual organelle in avian ovaries,” J. Ultrastruct. Res., 10, 528–546.

    Article  PubMed  CAS  Google Scholar 

  • Rahil, K. S., and Narbaitz, R., 1973, “Ultrastructural studies on the relationship between follicular cells and growing oocytes in the turtle Pseudemys scripta elegans,” J. Anat., 115, 175–186.

    Google Scholar 

  • Ramamurty, P. S., 1963, “Über die Herkunft der Ribonukleinsäure in den wachsenden Eizellen der Skorpionsfliege Panorpa communis (lnsecta, Mecoptera),” Naturwissenschaften, 50, 383384.

    Google Scholar 

  • Ramamurty, P. S., 1964a, “On the contribution of the follicle epithelium to the deposition of yolk in the oocyte of Panorpa communis (Mecoptera),” Exp. Cell Res., 33, 601–605.

    Article  PubMed  CAS  Google Scholar 

  • Ramamurty, P. S., 1964b, “Intercellular bridges in the ovarian follicles of Panorpa communis L. (Mecoptera-Insecta),” Curr. Sci., 33, 493–495.

    Google Scholar 

  • Raven, Ch., 1961, “Oogenesis: the storage of developmental information,” Pergamon Press, Oxford.

    Google Scholar 

  • Rebhun, L. I., 1961, “Some electron microscope observations on membranous basophilic elements of invertebrate eggs,” J. Ultrastruct. Res., 5, 208–225.

    Article  PubMed  CAS  Google Scholar 

  • Recourt, A., 1961, “Een elektronenmicroscopisch onderzoek naar de oogenese bij Limnaea stagnalis L.,” Dissertation, Utrecht.

    Google Scholar 

  • Reger, J. F., 1970, “A study on the origin and fine structure of yolk granules in oocytes of the arachnid Leiobunum sp. (Phalangid; Harvestman),” J. Submicrosc. Cytol., 2, 1–12.

    Google Scholar 

  • Ries, E., and van Well, P. B., 1934, “Die Eibildung der Kleiderlaus, untersucht an lebenden, vital gefärbten und fixierten Präparaten,” Z. Zellforsch., 20, 565–618.

    Article  Google Scholar 

  • Roth, T. F., and Jackson, R., 1972, “Protein transport driven uniquely by glycolysis in in vitro cultured oocytes,” J. Cell Biol., 55, Pt. 2, 221.

    Google Scholar 

  • Roth, T. F., and Porter, K. R., 1964, “Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L.,” Cell Biol., 20, 313–332.

    Article  CAS  Google Scholar 

  • Roth, T. F., Woodward, M. P., and Woods, J., 1977, “Comparison and selective dissociation of coated vesicles isolated from brain and oocytes,” J. Cell Biol., 75, Pt. 2, 372a.

    Google Scholar 

  • Rudack, D., and Wallace, R. A., 1968, “On the site of phosvitin synthesis in Xenopus laevis,” Biochim. Biophys. Acta, 155, 299–301.

    Google Scholar 

  • Rué, G., and Bierne, J., 1980, “Contrôle endocrinien de l’oogenèse chez l’hoplonémerte Amphiporous lactifloreus,” Bull. Soc. Zool. Fr., 105, 155–163.

    Google Scholar 

  • Ruthmann, A., 1964, “Zellwachstum und RNA-Synthese in Ei-Nährzellverband von Ophryotrocha puerilis,” Z. Zellforsch., 63, 816–829.

    Google Scholar 

  • Ryffel, G. U., Wyler, T., Muellender, D. B., and Weber, R., 1980, “identification, organization, and processing intermediates of the putative precursors of Xenopus vitellogenin messenger RNA,” Cell, 19, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Satch, N., 1974, “Intercellular bridges between oocytes in the developing ovary of the teleost Oryzias latipes,” Annot. Zool. Jpn., 47, 215–220.

    Google Scholar 

  • Sawada, N., Noda, Y., and Ochi, O., 1968, “An electron microscope study on the oogenesis of Golfingia ikedai,” Mem. Ehime Univ. Sci. Ser. B, 6, 25–39.

    Google Scholar 

  • Schjeide, O. A., Galey, F., Grellert, E. A., Lin, R., I-San, de Vellis, J., and Mead, J. F., 1970, “Macromolecules in oocyte maturation,” Biol. Reprod., Suppl., 2, 14–43.

    Article  Google Scholar 

  • Schjeide, O. A., Hanzely, L., Holshouser, S. J., and Briles, W. E., 1974, “Production fates of unique organelles (transosomes) in ovarian follicles of Gallus domesticus under various conditions,” Cell Tissue Res., 156, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Schmick, E., 1971, “Über die Kongruenz von Plasmaphysiologie und Kolloidchemie. Ein Beitrag zur Morphogenese des endoplasmatischen Retikulums,” Prax. Naturwiss., 20, 207–213.

    Google Scholar 

  • Schuel, H., Wilson, W. L., Wilson, J. R., and Bressler, R. S., 1975, “Heterogeneous distribution of ‘lysosomal’ hydrolases in yolk platelets isolated from unfertilized sea urchin eggs by zonal centrifugation,” Dev. Biol., 46, 404–412.

    Article  PubMed  CAS  Google Scholar 

  • Schuetz, A. W., Wallace, R. A., and Dumont, J. N., 1974, “Inhibition of protein incorporation by isolated amphibian oocytes: steroid dose and specificity relationships,” J. Cell Biol., 63, 305.

    Google Scholar 

  • Selman, K., and Wallace, R. A., 1978, “An autoradiographic study of vitellogenesis in the squid Loligo pealei,” Tissue Cell, 10, 599–608.

    Google Scholar 

  • Selwood, L., 1968, L., 1968, “Interrelationships between developing oocytes and ovarian tissues in the chiton Sypharochiton septentriones (Ashby) (Mollusca, Polyplacophora),” J. Morphol., 125, 7 1104.

    Google Scholar 

  • Selwood, L., 1970, “The role of the follicle cells during oogenesis in the chiton Sypharochiton septentriones (Ashby) (Polyplacophora, Mollusca),” Z. Zellforsch., 104, 178–192.

    Article  PubMed  CAS  Google Scholar 

  • Skalko, R. G., Kerrigan, J. M., Ruby, J. R., and Dyer, R. F., 1972, “Intercellular bridges between oocytes in the chicken ovary,” Z. Zellforsch., 128, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Sportnitz, U. M., and Kress, A., 1973, Ultrastructural studies of oogenesis in some European amphibians. II. Triturus vulgaris,“ Z. Zellforsch., 143, 387–407.

    Article  Google Scholar 

  • Srdi, Z., Reinhardt, C., Beck, H., and Gloor, H., 1979, “Autonomous yolk protein synthesis in ovaries of Drosophila cultured in vivo,” W. Roux’ Arch. Dev. Biol., 187, 255–266.

    Google Scholar 

  • Srivastava, M. D. L., 1965, “Cytoplasmic inclusions in oogenesis,” Int. Rev. Cytol., 18, 73–98.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, A., and Luciani, J. M., 1975, “Heterochromatin, micronucleoli, and nucleolus organizers at the first meoitic prophase in the human oocyte,” Proc. 10th Int. Congr. Anat. And 8th Annual Meet. Jpn. Assoc. Anatomists, Tokyo, p. 456.

    Google Scholar 

  • Stang-Voss, Ch., 1970, “Zur Entstehung des Golgi-Apparates. Elektronenmikroskopische Untersuchungen an Spermatiden von Eisenia foetida (Annelidae),” Z. Zellforsch., 109, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Stay, B., 1965, “Protein uptake in the oocytes of the cecropia moth,” J. Cell Biol., 26, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Stay, B., Friedel, T., Tobe, S. S., and Mundall, E. C., 1980, “Feedback control of juvenile hormone synthesis in cock- roaches: possible role for ecdysterone,” Science, 207, 898–900

    Article  PubMed  CAS  Google Scholar 

  • Stay, B., and Tobe, S. S., 1981, “Control of the corpora allata during a reproductive cycle in a viviparous cockroach,” Am. Zool., 21, 663–674.

    CAS  Google Scholar 

  • Steopoe, I., Ionescu, V. M., and Vlad, M., 1970, “Présence d’une calotte nucleohistonique extrachromosomique dans les noyaux des oocytes des téleosteens et des acipenserides,” Acta Histochim., 38, 311–317.

    CAS  Google Scholar 

  • Stockem, W., and Wohlfarth-Bottermann, K. E., 1969, “Pinocytosis (Endocytosis),” in: Handbook of Molecular Cytology, Vol. 15A, A. Lima-de-Faria (ed.), Elsevier, Amsterdam—London, pp. 1373–1400.

    Google Scholar 

  • Sundararaj, G. I., and Nath, P., 1981, “Steroid-induced synthesis of vitellogenin in the catfish Heteropneustes fossilís (Bloch),” Gen. Comp. Endocrinol., 43, 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Taddei, C., 1972, “Significance of pyriform cells in ovarian follicle of Lacerta sicula,” Exp. Cell Res., 72, 562–566.

    Google Scholar 

  • Tanaka, A., and Ishizaki, H., 1974, “Immunohistochemical detection of vitellogenin in the ovary and fat body during a reproductive cycle of the cockroach Blattella germanica,” Dev., Growth, Differ., 16, 247–255.

    Google Scholar 

  • Tata, J. R., 1976, “The expression of the vitellogenin gene,” Cell, 9, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Tata, J. R., 1978, “Regulation of vitellogenesis by estrogen,” in: Hormone and Cell Regulations, Vol. 2, J. Dumond and J. Nunez (eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 37–54.

    Google Scholar 

  • Tedesco, J. L., Courtright, J. B., and Kumaran, A. K., 1981, “Ultrastructural changes induced by juvenile hormone analog in oocyte membranes of apterous Drosphila melanogaster,” J. Insect Physiol., 27, 895–902.

    Google Scholar 

  • Telfer, W. H., 1954, “Immunological studies of insect metamorphosis. II. The role of a sex-limited blood protein in egg formation by the cecropia silkworm,” J. Gen. Physiol., 37, 539–558.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, W. H., 1960, “The selective accumulation of blood proteins by the oocytes of saturniid moths,” Biol. Bull., 118, 338351.

    Google Scholar 

  • Telfer, W. H., 1965, “The mechanism and control of yolk formation,” Annu. Rev. Entomol., 10, 161–184.

    Article  CAS  Google Scholar 

  • Telfer, W. H., 1975, “Development and physiology of the oocytenurse cell syncytium,” Adv. Insect Physiol., 11, 223–319.

    Article  Google Scholar 

  • Telfer, W. H., and Anderson, L. M., 1968, “Functional transformations accompanying the initiation of a terminal growth phase in the cecropia moth oocyte,” Dev. Biol., 17, 512–535.

    Article  PubMed  CAS  Google Scholar 

  • Tuzet, O., 1962, “L’origine de cellule germinale et gametogenèse chez de l’Eponge,” in: L’origine de la lignée germinale chez les Vertébrés et chez quelques groups d’Invertébrés, Paris.

    Google Scholar 

  • Ulrich, E., 1969, “Étude des ultrastructures au cours de l’ovogenèse d’un poisson téléosteen, le Danio Brachydanio rerio (Hamilton-Buchanan), J. Microsc., 8, 447–478.

    Google Scholar 

  • Urbani, E., 1969, “Cytochemical and ultrastructural studies of oogenesis in the Dytiscidae,” Monit. Zool. Ital., 3, 55–87.

    Google Scholar 

  • Verhey, C. A., and Moyer, F. H., 1967, “Fine structural changes during sea urchin oogenesis,” J. Exp. Zool., 164, 195–225.

    Article  Google Scholar 

  • Vincent, W. S., Halvorson, H. O., Chen, H.-R., and Shin, D., 1969, “A comparison of ribosomal gene amplification and uni-and multinucleolate oocytes, Exp. Cell Res., 57, 240–250.

    Google Scholar 

  • Vitaioli, L., and Materazzi, G., 1972, “Studi citochimici comparativi sulle cellule testacee di alcuni ascidiacei,” Riv. Biol., 65, 137–145.

    PubMed  CAS  Google Scholar 

  • Wallace, R. A., 1963, “Studies on amphibian yolk. IV. An analysis of the main-body component of yolk platelets,” Biochim. Biophys. Acta, 74, 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. A., 1965, “Resolution and isolation of avian and amphibian yolk-granule proteins using TEAE-cellulose,” Anal. Biochem., 11, 292–311.

    Article  Google Scholar 

  • Wallace, R. A., and Dumont, J. N., 1968, “The induced synthesis and transport of yolk proteins and their accumulation by the oocyte in Xenopus laevis,” J. Cell Physiol., 72, 73–89.

    Google Scholar 

  • Wallace, R. A., and Jared, D. W., 1968, “Estrogen-induced lipophosphoprotein in serum of male Xenopus laevis,” Science, 160, 91–92.

    Google Scholar 

  • Wallace, R. A., and Jared, D. W., 1969, “Studies on amphibian yolk. VIII. The estrogen-induced hepatic synthesis of a serum lipophosphoprotein and its selective uptake by the ovary and transformation into yolk platelet proteins in Xenopus laevis,” Dev. Biol., 19, 498–526.

    Google Scholar 

  • Wallace, R. A., and Jared, D. W., 1976, “Protein incorporation by isolated amphibian oocytes. V. Specificity for vitellogenin incorporation,” J. Cell Biol., 69, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. A., Jared, D. W., Dumont, J. N., and Sega, M. W., 1973, “Protein incorporation by isolated amphibian oocytes. III. Optimum incubation conditions,” J. Exp. Zool., 184, 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. A., Jared, D. W., and Nelson, B. L., 1970, “Protein incorporation by isolated amphibian oocytes. I. Preliminary studies,” J. Exp. Zool., 175, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. A., Nickol, J. M., Ho, T., and Jared, D. W., 1972, “Studies on amphibian yolk. X. The relative roles of auto-synthetic and heterosynthetic processes during yolk protein assembly by isolated oocytes,” Dev. Biol., 29, 255–272.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. A., Salter, D. W., Ho, T., and Jared, D. W., 1973, “Protein incorporation by isolated amphibian oocytes. IV. The role of follicle cells and calcium during protein uptake,” Exp. Cell Res., 82., 287–295.

    Google Scholar 

  • Wangh, L. J., and Knowland, J., 1975, “Synthesis of vitellogenin in cultures of male and female frog liver regulated by estradiol treatment in vitro,” Proc. Natl. Acad. Sci. USA, 72, 3172–3175.

    Article  PubMed  CAS  Google Scholar 

  • Ward, R. T., 1962, “The origin of protein and yolk in Rana pipiens. II. Electron microscopical and cytochemical observations of young and mature oocytes,” J. Cell Biol., 14, 309341.

    Google Scholar 

  • Ward, R. T., 1965, “Formation of Golgi bodies during maturation of oocytes in Rana pipiens,” Anat. Rec., 151, 430.

    Google Scholar 

  • Wartenberg, H., 1964, “Experimentelle Untersuchungen über die Stoffaufnahme durch Pinocotyse während der Vitellogenese des Amphibien oocyten,” Z. Zellforsch., 63, 1004–1019.

    Article  PubMed  CAS  Google Scholar 

  • Wegmann, I., and Götting, K-J., 1971, “Untersuchungen zur Dotterbildung in den Oocyten von Xiphophorus helleri (Heckel, 1948) (Teleostei Poeciliidae.,” Z. Zellforsch., 199, 405–433.

    Article  Google Scholar 

  • Wells, M. J., and Wells, J., 1959, “Hormonal control of sexual maturity in octopus,” J. Exp. Biol., 36, 1-33.

    Google Scholar 

  • Wilhelm, R., and Löscher, M., 1974, “On the relative importance of juvenile hormone and vitellogenin for oocyte growth in the cockroach Nauphoeta cinerea,” J. Insect Physiol., 20, 1887–1894.

    Google Scholar 

  • Williams, D. L., 1977, “Processing and secretion of avian vitellogenin,” J. Cell Biol., 75, 366a.

    Article  Google Scholar 

  • Winter, H., 1974, “Ribonucleoprotein-Partikel aus dem telotrophmeroistischen Ovar von Dysdercus intermedius Dist. (Heterop tera, Pyrrhoc.) und ihr Verhalten im zellfreien Proteinsyn thesesystem,” W. Roux’ Arch. Entwicklungsmech. Org., 175, 103–127.

    Article  CAS  Google Scholar 

  • Wolin, E. M., Laufer, H., and Albertini, D. F., 1973, “Uptake of the yolk protein, lipovitellin, by developing crustacean oocytes,” Dev. Biol., 35, 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, R. I., and Telfer, W. H., 1973, “Polarized intercellular bridges in ovarian follicles of the cecropia moth,” J. Cell Biol., 58, 172–188.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., and Oota, J., 1967, “Fine structure of yolk globules in the oocyte of the zebrafish Brachydanio rerio,” Annot. Zool. Jpn., 40, 20–27.

    Google Scholar 

  • Yamamoto, M., Ohkawa, M., and Ishida, J., 1973, “An electron microscopic study of oogenesis in the echiuroid Urechis unicinctus,” J. Fac. Sci. Univ. Tokyo, Sec. 4, 13, 39–54.

    Google Scholar 

  • Yu, J.Y.-L., Dickhoff, W. W., Swanson, P., and Gorbman, A., 1981, “Vitellogenesis and its hormonal regulation in the Pacific hagfish Eptatretus stouti L.,” Gen. Comp. Endocrinol., 43, 492–502.

    Article  PubMed  CAS  Google Scholar 

  • Yung Ko Ching, M., 1930, “Contribution a l’étude cytologique de l’ovogenèse, due développement et de quelques organes chez les céphalopodes,” Ann. Inst. Océanogr. Monaco, 7, 301–364.

    Google Scholar 

  • Zamboni, L., Smith, D. M., and Thompson, R. S., 1972, “Migration of follicle cells through the zona pellucida and their sequestration by human oocytes in vitro,” J. Exp. Zool., 181, 319–338.

    Article  PubMed  CAS  Google Scholar 

  • Zelenin, A. V., 1962, “Pinocytosis,” Usp. Sovrem. Biol., 53, 364–374.

    PubMed  CAS  Google Scholar 

  • Zihler, J., 1972, “Zur Gametogenese und Befruchtungsbiologie von Hydra,” W. Roux’ Arch. Entwicklungsmech. Org., 169, 239–267

    Article  Google Scholar 

  • Zinsmeister, P. P., and Davenport, R., 1971, “An autoradiographic and cytochemical study of cellular interactions during ooSgenesis in the milkweed bud Oncopeltus fasciatus,” Exp. Cell Res., 67, 273–278.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Consultants Bureau, New York

About this chapter

Cite this chapter

Aizenshtadt, T.B. (1988). Oocyte Growth and Vitellogenesis. In: Dettlaff, T.A., Vassetzky, S.G., Billett, F. (eds) Oocyte Growth and Maturation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0682-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0682-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0684-9

  • Online ISBN: 978-1-4684-0682-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics