Skip to main content

Central Limit Theorems

  • Chapter
Probability Theory

Part of the book series: Springer Texts in Statistics ((STS))

  • 800 Accesses

Abstract

Central limit theorems have played a paramount role in probability theory starting—in the case of independent random variables—with the DeMoivre- Laplace version and culminating with that of Lindeberg—Feller. The term “central” refers to the pervasive, although nonunique, role of the normal distribution as a limit of d.f.s of normalized sums of (classically independent) random variables. Central limit theorems also govern various classes of dependent random variables and the cases of martingales and interchangeable random variables will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Anscombe, “Large sample theory of sequential estimation,” Proc. Cambr. Philos. Soc. 48 (1952), 600–607.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Bernstein, “Several comments concerning the limit theorem of Liapounov,” Dokl. Ahad. Nauk. SSSR 24 (1939), 3–7.

    Google Scholar 

  • A. C. Berry, “The accuracy of the Gaussian approximation to the sum of independent variates,” Trans. Amer. Math. Soc. 49 (1941), 122–136.

    Article  MathSciNet  Google Scholar 

  • J. Blum, D. Hanson, and J. Rosenblatt, “On the CLT for the sum of a random number of random variables,” Z. Wahr. Verw. Geb. 1 (1962–1963), 389–393.

    Google Scholar 

  • J. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, “Central limit theorems for interchangeable processes,” Can. Jour. Math. 10 (1958), 222–229.

    Article  MathSciNet  MATH  Google Scholar 

  • K. L. Chung, A Course in Probability Theory, Harcourt Brace, New York, 1968; 2nd ed., Academic Press, New York, 1974.

    MATH  Google Scholar 

  • W. Doeblin, “Sur deux problèmes de M. Kolmogorov concernant les chaines denom-brables,” Bull, Soc. Math. France 66 (1938), 210–220.

    MathSciNet  Google Scholar 

  • J. L. Doob, Stochastic Processes, Wiley New York, 1953.

    Google Scholar 

  • A. Dvoretzky, “Asymptotic normality for sums of dependent random variables,” Proc. Sixth Berkeley Symp. on Stat, and Prob. 1970, 513–535.

    Google Scholar 

  • P. Erdos and M. Kac, “On certain limit theorems of the theory of probability,” Bull. Amer. Math. Soc. 52 (1946), 292–302.

    Article  MathSciNet  Google Scholar 

  • C. Esseen, “Fourier analysis of distribution functions,” Acta Math. 77 (1945), 1–125.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Feller, “Über den Zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung,” Math, Zeit. 40 (1935), 521–559.

    Article  MathSciNet  Google Scholar 

  • N. Friedman, M. Katz, and L. Koopmans, “Convergence rates for the central limit theorem,” Proc. Nat. Acad. Sei. 56 (1966), 1062–1065.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Hall and C. C. Heyde, Martingale Limit Theory and its Application, Academic Press, New York, 1980.

    MATH  Google Scholar 

  • P. Lévy, Théorie de l’ addition des variables aleatoiries, Gauthier-Villars, Paris, 1937; 2nd ed., 1954.

    Google Scholar 

  • J. Lindeberg, “Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung,” Math. Zeit. 15 (1922), 211–225.

    Article  MathSciNet  Google Scholar 

  • L. McLeish, “Dependent Central Limit Theorems and invariance principles,” Ann. Prob. 2 (1974), 620–628.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Mogyorodi, “A CLT for the sum of a random number of independent random variables,” Magyor. Tud. Akad. Mat. Kutato Int. Kozl. 7 (1962), 409–424.

    MathSciNet  MATH  Google Scholar 

  • A. Renyi, “Three new proofs and a generalization of a theorem of Irving Weiss,” Magyor. Tud. Akad. Mat. Kutato Int. Közl. 7 (1962), 203–214.

    MathSciNet  MATH  Google Scholar 

  • A. Renyi, “On the CLT for the sum of a random number of independent random variables, Acta Math. Acad. Sei. Hung. 11 (1960), 97–102.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Rosen, “On the asymptotic distribution of sums of independent, identically distributed random variables,” Arkiv for Mat. 4 (1962), 323–332.

    Article  MATH  Google Scholar 

  • D. Siegmund, “On the asymptotic normality of one-sided stopping rules,” Ann. Math. Stat. 39(1968), 1493–1497.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Teicher, “On interchangeable random variables,” Studi di Probabilita Statistica e Ricerca Operativa in Onore di Giuseppe Pompilj, pp. 141–148, Gubbio, 1971.

    Google Scholar 

  • H. Teicher, “A classical limit theorem without invariance or reflection, Ann. Math. Stat. 43 (1973), 702–704.

    MathSciNet  Google Scholar 

  • P. Van Beek, “An application of the Fourier method to the problem of sharpening the Berry-Esseen inequality,” Z. Wahr. 23 (1972), 187–197.

    Article  MATH  Google Scholar 

  • I. Weiss, “Limit distributions in some occupancy problems,” Ann. Math. Stat. 29 (1958), 878–884.

    Article  MATH  Google Scholar 

  • V. Zolotarev, “An absolute estimate of the remainder term in the C.L.T.,” Theor. Prob. And its. Appl. 11 (1966), 95–105.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Chow, Y.S., Teicher, H. (1988). Central Limit Theorems. In: Probability Theory. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0504-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0504-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0506-4

  • Online ISBN: 978-1-4684-0504-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics