Skip to main content

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

Abstract

During this century, two great physical theories have emerged. Each theory remains unchallenged within its respective domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

For introductions to string theory, see Refs. 1 and 2

  1. M. Kaku, Introduction to Superstrings, Springer-Verlag, Berlin and New York (1989).

    Google Scholar 

  2. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Cambridge Univ. Press, Vols. 1 and 2, London and New York (1987).

    Google Scholar 

For reviews of the older, dual resonance model, see Refs. 3 to 7

  1. J. H. Schwarz, Phys. Rep. 89, 223 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M. Jacob, ed., Dual Theory, North-Holland Publ., Amsterdam (1974).

    Google Scholar 

  3. J. H. Schwarz, ed., Superstrings: the First 15 Years of Superstring Theory, World Scientific, Singapore (1985).

    Google Scholar 

  4. J. Scherk, Rev. Mod. Phys. 47, 1213 (1975).

    Article  MathSciNet  Google Scholar 

  5. P. Frampton, Dual Resonance Models, Benjamin, New York (1974).

    Google Scholar 

  6. Y. Nambu, Lectures at the Copenhagen Summer Symposium (1970).

    Google Scholar 

  7. T. Goto, Prog. Theor. Phys. 46, 1560 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. M. Polyakov, Phys. Lett. 103B, 207, 211 (1981).

    MathSciNet  ADS  Google Scholar 

  9. J.L. Gervais and B. Sakita, Nucl. Phys. B34, 632 (1971); Phys. Rev. D4, 2291 (1971); Phys. Rev. Lett. 30, 716 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Pubini, D. Gordon, and G. Veneziano, Phys. Lett. 29B, 679 (1969).

    ADS  Google Scholar 

  11. M. A. Virasoro, Phys. Rev. D1, 2933 (1970).

    ADS  Google Scholar 

  12. P. Goddard and C. B. Thorn, Phys. Lett. 40B, 235 (1972).

    ADS  Google Scholar 

  13. R. C. Brower and K. A. Friedman, Phys. Lett. D7, 535 (1973).

    ADS  Google Scholar 

  14. P. Goddard, J. Goldstone, C. Rebbi, and C. B. Thorn, Nucl. Phys. B56, 109 (1973).

    Article  ADS  Google Scholar 

  15. C. Becchi, A. Rouet, and R. Stora, Ann. Phys. 98, 287 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  16. I. V. Tyupin, Lebedev preprint, FIAN No. 39 (1975), unpublished.

    Google Scholar 

  17. L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 29 (1967).

    ADS  Google Scholar 

  18. M. Kato and K. Ogawa, Nucl. Phys. B212, 443 (1983).

    Article  ADS  Google Scholar 

  19. E. S. Fradkin and G. A. Vilkoviski, Phys. Lett. 55B, 224 (1975).

    ADS  Google Scholar 

  20. G. Veneziano, Nuovo Cim. 57A, 190 (1968).

    Article  ADS  Google Scholar 

  21. M. Suzuki, unpublished.

    Google Scholar 

  22. K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184, 1701 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Kaku and L. P. Yu, Phys. Lett. 33B, 166 (1970); Phys. Rev. D3, 2992, 3007, 3020 (1971); M. Kaku and J. Scherk, Phys. Rev. D3, 430 (1971); Phys. Rev. D3, 2000 (1971).

    ADS  Google Scholar 

  24. C. Lovelace, Phys. Lett. 32B, 703 (1970); Phys. Lett. 34B, 500 (1971).

    MathSciNet  ADS  Google Scholar 

  25. V. Alessandrini, Nuovo Cim. 2A, 321 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  26. C. S. Hsue, B. Sakita, and M. A. Virasoro, Phys. Rev. D2, 2857 1970.

    ADS  Google Scholar 

  27. M. A. Virasoro, Phys. Rev. 177, 2309 (1970).

    Article  ADS  Google Scholar 

  28. J. Shapiro, Phys. Lett. 33B, 361 (1970).

    ADS  Google Scholar 

  29. S. Mandelstam, Nucl. Phys. B64, 205 (1973); Nucl. Phys. B69, 77 (1974).

    Article  ADS  Google Scholar 

  30. M. Kaku and K. Kikkawa, Phys. Rev. D10, 1110, 1823 (1974).

    ADS  Google Scholar 

  31. A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971).

    Article  ADS  Google Scholar 

  32. P. Ramond, Phys. Rev. D3, 2415 (1971).

    MathSciNet  ADS  Google Scholar 

  33. M. Green and J. H. Schwarz, Phys. Lett. 136B, 367 (1984); Nucl. Phys. B198 252, 441 (1982).

    ADS  Google Scholar 

  34. J. L. Gervais and B. Sakita, Nucl. Phys. B34, 632 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Brink, P. Di Vecchia, and P. Howe, Phys. Rev. D5, 988 (1972).

    Google Scholar 

  36. S. Deser and B. Zumino, Phys. Lett. 65B, 369 (1976).

    MathSciNet  ADS  Google Scholar 

  37. F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys. B122, 253 (1977).

    Article  ADS  Google Scholar 

  38. D. Gross, H. A. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 502 (1985); Nucl. Phys. B256, 253 (1986); B267, 75 (1986).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kaku, M. (1991). Introduction to Superstrings. In: Strings, Conformal Fields, and Topology. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0397-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0397-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0399-2

  • Online ISBN: 978-1-4684-0397-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics