Skip to main content

Chromosome Structural Aberrations

  • Chapter
Human Chromosomes
  • 138 Accesses

Abstract

Chromosomes sometimes break spontaneously, or breakage may be caused by a mutagenic agent, such as ionizing radiation or a chemical compound. Unlike normal chromosome ends, broken ends tend to join each other. Usually the broken ends rejoin; in other words, the break heals. However, a break may lead to a deletion or, if more than one break has occurred in a cell, to structural rearrangements of chromosomes. At least three different DNA repair systems may be involved in the joining of broken chromosome ends (cf. Bartram, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach C (1976) Mutation research. Problems, results and perspectives. Chapman and Hall, London

    Google Scholar 

  • Auerbach C (1978) Forty years of mutation research: a pilgrim’s progress. Heredity 40: 177–187

    Article  PubMed  CAS  Google Scholar 

  • Bartram CR (1980) DNA repair: pathways and defects. Eur J Pediatr 135: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Bateman AJ (1975) Simplification of palindromic telomere theory. Nature 253: 379–380

    Article  PubMed  CAS  Google Scholar 

  • Chapelle A de la, Berger R (1984) Report of the committee on the chromosome rearrangements in neoplasia and on fragile sites. Cytogenet Cell Genet 37: 274–311

    Article  PubMed  Google Scholar 

  • Cohen MM, MacGillivray MH, Capraro VJ, et al (1973) Human dicentric Y chromosomes. J Med Genet 10: 74–79

    Article  PubMed  CAS  Google Scholar 

  • Cooke P, Gordon RR (1965) Cytological studies on a human ring chromosome. Ann Hum Genet 29: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Daly RF, Patau K, Therman E, et al (1977) Structure and Barr body formation of an Xp+ chromosome with two inactivation centers. Am J Hum Genet 29: 83–93

    PubMed  CAS  Google Scholar 

  • Drets ME, Stoll M (1974) C-banding and non-homologous associations in Gryllus argentinus. Chromosoma 48: 367–390

    Article  PubMed  CAS  Google Scholar 

  • Drets ME, Therman E (1983) Human telomeric 6;19 translocation chromosome with a tendency to break at the fusion point. Chromosoma 88: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Aurias A, Couturier J, et al (1977) Multiple telomeric fusions and chain configurations in human somatic chromosomes. In: Chapelle A de la, Sorsa M (eds) Chromosomes today, Vol 6. Elsevier/North Holland, Amsterdam, pp 37–44

    Google Scholar 

  • Evans HJ (1962) Chromosome aberrations induced by ionizing radiations. Int Rev Cytol 13: 221–321

    Article  CAS  Google Scholar 

  • Evans HJ (1974) Effects of ionizing radiation on mammalian chromosomes. In: German J (ed) Chromosomes and cancer. Wiley, New York, pp 191–237

    Google Scholar 

  • Evans HJ (1983) Effects on chromosomes of carcinogenic rays and chemicals. In: German J (ed) Chromosome mutation and neoplasia. Liss, New York, pp. 253–279

    Google Scholar 

  • Fitzgerald PH, McEwan CM (1977) Total aneuploidy and age-related sex chromosome aneuploidy in cultured lymphocytes of normal men and women. Hum Genet 39: 329–337

    Article  PubMed  CAS  Google Scholar 

  • Fryns JP, Azou M, Jaeken J, et al (1981) Centromeric instability of chromosomes 1, 9 and 16 associated with combined immunodeficiency. Hum Genet 57: 108–110

    PubMed  CAS  Google Scholar 

  • Gebhart E (1970) The treatment of human chromosomes in vitro: results. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, New York, pp 367–382

    Google Scholar 

  • Hansmann I, Wiedeking C, Grimm T, et al (1977) Reciprocal or nonreciprocal human chromosome translocations? The identification of reciprocal translocations by silver staining. Hum Genet 38: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Hecht F, Sutherland GR (1984) Fragile sites and cancer breakpoints. Cancer Genet Cytogenet 12: 179–181

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP, Dancis B (1979) Telomere replication, kinetochore organizers, and satellite DNA evolution. Proc Natl Sci USA 76: 4566–4570

    Article  CAS  Google Scholar 

  • Kihlman BA (1966) Actions of chemicals on dividing cells. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Kuhn EM, Therman E (1982) Origin of symmetrical triradial chromosomes in human cells. Chromosoma 86: 673–681

    Article  PubMed  CAS  Google Scholar 

  • Nakagome Y, Abe T, Misawa S, et al (1984) The “loss” of centromeres from chromosomes of aged women. Am J Hum Genet 36: 398–404

    PubMed  CAS  Google Scholar 

  • Niebuhr E (1978) Cytologic observations in 35 individuals with a 5p-karyotype. Hum Genet 42: 143–156

    Article  PubMed  CAS  Google Scholar 

  • Patau K (1965) The chromosomes. In: Birth defects: original article series, Vol 1, The National Foundation—March of Dimes, New York, pp 71–74

    Google Scholar 

  • Rieger R, Michaelis A (1967) Die Chromosomenmutationen. Gustav Fischer, Jena

    Google Scholar 

  • Schwartz S, Palmer CG, Weaver DD, et al (1983) Dicentric chromosome 13 and centromere inactivation. Hum Genet 63: 332–337

    Article  PubMed  CAS  Google Scholar 

  • Sparrow AH (1965) Comparisons of the tolerances of higher plant species to acute and chronic exposure of ionizing radiation. In: Mechanisms of the dose rate effect of radiation at the genetic and cellular levels. Special suppl. Jpn J Genet 40: 12–37

    Google Scholar 

  • Stahl-Maugé C, Hager HD, Schroeder TM (1978) The problem of partial endoreduplication. Hum Genet 45: 51–62

    Article  PubMed  Google Scholar 

  • Sutherland GR (1982) Heritable fragile sites on human chromosomes. VIII. Preliminary population cytogenetic data on the folic-acid-sensitive fragile sites. Am J Hum Genet 34: 452–458

    PubMed  CAS  Google Scholar 

  • Therman E, Kuhn EM (1976) Cytological demonstration of mitotic crossing-over in man. Cytogenet Cell Genet 17: 254–267

    Article  PubMed  CAS  Google Scholar 

  • Therman E. Kuhn EM (1985) Incidence and origin of symmetric and asymmetric dicentrics in Bloom’s syndrome. Cancer Genet Cytogenet 15: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Therman E, Sarto GE, Patau K (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet 26: 83–92

    PubMed  CAS  Google Scholar 

  • Tiepolo L, Maraschio P, Gimelli G, et al (1979) Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet 51: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Weitkamp LR, Ferguson-Smith MA, Guttormsen SA, et al (1978) The linkage relationships of marker sites on chromosomes no. 2 and 10. Ann Hum Genet 42: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221: 227–236

    Article  PubMed  CAS  Google Scholar 

  • Zakharov AF, Baranovskaya LI (1983) X-X chromosome translocations and their karyotype-phenotype correlations. In: Sandberg AA (ed) Cytogenetics of the mammalian X chromosome, Part B: X chromosome anomalies and their clinical manifestations. Liss, New York, pp 261–279

    Google Scholar 

  • Zankl H, Huwer H (1978) Are NORs easily translocated to deleted chromosomes? Hum Genet 42: 137–142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Therman, E. (1986). Chromosome Structural Aberrations. In: Human Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0269-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0269-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96173-6

  • Online ISBN: 978-1-4684-0269-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics