Skip to main content

Signal-Space Coding

  • Chapter
Digital Communication

Abstract

Error control, introduced in Chapter 13, adds redundancy, in the form of extra bits, and then uses that redundancy to correct errors introduced by the channel. There are shortcomings that we will address in this chapter:

  • In typical applications, the extra bits either increase the bandwidth and the noise allowed into the receiver, or increase the number of bits per symbol. In the second case, the constellation minimum distance will be decreased or the average power increased.

  • Convolutional and block codes specify how to generate redundant bits, but do not specify how to map the additional bits into data symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. de Buda, “Some Optimal Codes Have Structure,” IEEE Journal on Selected Areas in Communications, p. 877 (Aug. 1989).

    Google Scholar 

  2. G. D. Forney, Jr and L-F Wei, “Multidimensional Constellations, Part I: Introduction, Figures of Merit, and Generalized Cross Constellations, ” IEEE Journal on Selected Areas in Communications, p. 877 (Aug. 1989).

    Google Scholar 

  3. G. Ungerboeck, “Channel Coding with Multilevel/Phase Signals,” IEEE Trans. on Information Theory IT-28, No. 1(Jan. 1982 ).

    Google Scholar 

  4. L.-F. Wei, “Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space: Part II: Nonlinear Codes,” IEEE Journal on Selected Areas in Communications SAC-2(5)(Sep. 1984 ).

    Google Scholar 

  5. G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets Part I: Introduction,” IEEE Communications Magazine 25 (2) pp. 5–11 (Feb. 1987).

    Article  Google Scholar 

  6. G. D. Forney, Jr, “Colet Codes - Part I: Introduction and Geometrical Classification,” IEEE Trans. Information Theory IT-34 p. 1123 (1988).

    Google Scholar 

  7. G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets Part II: State of the Art,” IEEE Communications Magazine 25 (2) pp. 12–21 (Feb. 1987).

    Article  Google Scholar 

  8. A. R. Calderbank and N. J. A. Sloane, “Four-Dimensional Modulation With an Eight-State Trellis Code,” AT and T Technical Journal 64(5)(May-June 1985 ).

    Google Scholar 

  9. G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, “Efficient Modulation for Band-Limited Channels,” IEEE Journal on Selected Areas in Communications SAC-2(5)(Sep. 1984 ).

    Google Scholar 

  10. L.-F. Wei, “Trellis-Coded Modulation with Multi-Dimensional Constellations,” IEEE Trans. on Information Theory IT-33 p. 483 (1987).

    Google Scholar 

  11. A. R. Calderbank and N. J. A. Sloane, “New Trellis Codes Based on Lattices and Cosets,” IEEE Trans. Information Theory IT-33 p. 177 (1987).

    Google Scholar 

  12. M. V. Eyuboglu and G. D. Fomey, Jr, “Trellis Precoding: Combined Coding, Precoding, and Shaping for Intersymbol Interference Channels,” IEEE Trans. Information Theory, (March 1992).

    Google Scholar 

  13. A. Duel-Hallen and C. Heegard, “Delayed Decision-Feedback Equalization,” IEEE Trans. Communications COM-37 p. 13 (Jan. 1988).

    Google Scholar 

  14. P. Chevillat and E. Eleftheriou, “Decoding of Trellis-Encoded Signals in the Presence of Inter-symbol Interference and Noise,” IEEE Trans. Communications COM-37 p. 669 (July 1989).

    Google Scholar 

  15. M. V. Eyuboglu and S. U. Qureshi, “Reduced-State Sequence Estimation for Coded Modulation on Intersymbol Interference Channels,” IEEE Journal Select Areas in Communications SAC-7 p. 989 (Aug. 1989).

    Google Scholar 

  16. I. P. Csajka and G. Ungerboeck, “Method and Arrangement for Coding Binary Signals and Modulating a Carrier Signal,” U. S. Patent no. 4,077,021, (Feb. 28, 1978 ).

    Google Scholar 

  17. E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded Modulation with Applications, Macmillan, New York (1991).

    MATH  Google Scholar 

  18. A. R. Calderbank and J. Mazo, “A New Description of Trellis Codes,” IEEE Trans. on Information Theory IT-30(6)(Nov. 1984 ).

    Google Scholar 

  19. D. Divsalar, M. K. Simon, and J. H. Yuen, “Trellis Coding with Asymmetric Modulations,” IEEE Trans. on Communications COM-35(2)(Feb. 1987 ).

    Google Scholar 

  20. G. D. Forney, Jr and M. V. Eyuboglu, “Combined Equalization and Coding Using Precoding,” IEEE Communications Magazine, (Dec. 1991).

    Google Scholar 

  21. M. V. Eyuboglu and G. D. Forney, Jr, “Advanced Modulation Techniques for V.Fast,” European Transactions on Telecommunications and Related Technologies, (to appear).

    Google Scholar 

  22. G. Lang and F. Longstaff, “A Leech Lattice Modem,” IEEE Journal on Selected Areas in Communications 7 p. 968 (Aug. 1989).

    Article  Google Scholar 

  23. P. H. Siegel and J. K. Wolf, “Modulation and Coding for Information Storage,” IEEE Communications Magazine, (Dec. 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee, E.A., Messerschmitt, D.G. (1997). Signal-Space Coding. In: Digital Communication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0004-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0004-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0006-9

  • Online ISBN: 978-1-4684-0004-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics