Skip to main content

Abstract

Magnetic resonance angiography (MRA) has become an important technique in vascular diseases. Although conventional digital subtraction angiography (DSA) still is the gold standard for the evaluation of vascular pathology, MRA provides more than just anatomic information. In all MRA techniques, image contrast is the result of blood motion. Therefore, the influence of the hemodynamics of blood flow on the magnetic resonance (MR) signal intensity is obvious and measurable. MRA is noninvasive and safe. Whether a two-dimensional (2-D) or three-dimensional (3-D) sequence is used, a complete 3-D data set can be acquired within a few minutes. Data postprocessing allows for unlimited projections of vessels after the examination is concluded. As a result of recent technical improvements in image quality and vessel depiction, the spatial resolution now approaches that of DSA. Furthermore, particularly in young patients, the reduced use of x-rays is desirable. During the past few years, the administration of contrast agents and development of high-power gradient systems has contributed to major advances in spatial and temporal resolution and the imaged field of view. The popular 3-D contrast MRA uses small intravenous doses of paramagnetic contrast media for high-resolution arteriography, which results in a favorable signal-to-noise ratio (SNR) owing to enhanced longitudinal relaxation time (T1) shortening. This technique has been evaluated in an increasing number of diseases. Thus, arterial catheterization with its potential complications and nephrotoxicity due to iodinated contrast agents is being partially replaced by MRA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. Parker DL, Yuan C, Blatter DD: MR angiography by multiple thin slab 3D acquisition. Magn Resort Med 1991, 17:434–451.

    Article  CAS  Google Scholar 

  2. NASCET Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991, 325:445–453.

    Article  Google Scholar 

  3. Anzola GP, Gasparotti R, Magoni M, Prandini F: Transcranial Doppler sonography and magnetic resonance angiography in the assessment of collateral hemispheric flow in patients with carotid artery disease. Stroke 1995, 26:214–217.

    Article  PubMed  CAS  Google Scholar 

  4. Patel MR, Kuntz KM, Klufas RA, et al.: Preoperative assessment of the carotid bifurcation. Can magnetic resonance angiography and duplex ultrasonography replace contrast arteriography? Stroke 1995, 26:1753–1758.

    CAS  Google Scholar 

  5. Baumgartner RW, Mattle HP, Aaslid R: Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography; Methods, applications, advantages, and limitations. J Clin Ultrasound 1995, 23:89–111.

    Article  PubMed  CAS  Google Scholar 

  6. Benjamin MS, Gillams AR, Carter AP: Carotid MRA: what advantages do the turbo field-echo and 3D phase-contrast sequences offer? Neuroradiology 1997, 39:469–473.

    Article  PubMed  CAS  Google Scholar 

  7. Bradley WG: Recent advances in magnetic resonance angiography of the brain. Curr Opin Neurol Neurosurg 1992, 5:859–862.

    PubMed  CAS  Google Scholar 

  8. Carpenter JP, Holland GA, Golden MA, et al.: Magnetic resonance angiography of the aortic arch. J Vasc Surg 1997, 25:145–151.

    Article  PubMed  CAS  Google Scholar 

  9. Cloft HJ, Murphy KJ, Prince MR, Brunberg JA: 3D gadolinium-enhanced MR angiography of the carotid arteries. Magn Reson Imaging 1996, 14:593–600.

    Article  PubMed  CAS  Google Scholar 

  10. Heid O, Remonda L: Gd-enhanced 3D MRA of the carotid arteries. Int Soc Magn Reson Med 1998, 1:556.

    Google Scholar 

  11. Baumgartner RW, Baumgartner I, Mattle HP, Schroth G: Transcranial color-coded duplex sonography in the evaluation of collateral flow through the circle of Willis. AJNR Am J Neuroradiol 1997, 18:127–133.

    PubMed  CAS  Google Scholar 

  12. Lee LJ, Kidwell CS, Alger J, et al. Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 2000, 31:1081–1089.

    Article  PubMed  CAS  Google Scholar 

  13. Mattle HP, Edelman RR: Cerebral magnetic resonance angiography. Neurol Res 1992, 14:118–121.

    PubMed  CAS  Google Scholar 

  14. Patrux B, Laissy JP, Jouini S, et al.: Magnetic resonance angiography (MRA) of the circle of Willis: a prospective comparison with conventional angiography in 54 subjects. Neuroradiology 1994, 36:193–197.

    Article  PubMed  CAS  Google Scholar 

  15. Bernasconi A, Bogousslavsky J, Bassetti C, Regli F: Multiple acute infarcts in the posterior circulation. J Neurol Neurosurg Psychiatry 1996, 60:289–296.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jacobs A, Lanfermann H, Neveling M, et al.: MRI-and MRA-guided therapy of carotid and vertebral artery dissections. J Neurol Sci 1997, 147:27–34.

    Article  PubMed  CAS  Google Scholar 

  17. Auer A, Felber S, Schmidauer C, et al.: Magnetic resonance angiographie and clinical features of extracranial vertebral artery dissection. J Neurol Neurosurg Psychiatry 1998, 64:474–481.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ruggieri PM, Masaryk TJ, et al.: Intracranial magnetic resonance imaging. Invest Radiol 1992, 27(suppl 2):S33–S39.

    Article  PubMed  Google Scholar 

  19. Christophe C, Azzi N, Bouche B, et al.: Magnetic resonance imaging and angiography in cerebral fungal vasculitis. Neuropediatrics 1999, 30:218–220.

    Article  PubMed  CAS  Google Scholar 

  20. Mattle HP, Wentz KU, Edelman RR, et al.: Cerebral venography with MR. Radiology 1991, 178:453–458.

    Article  PubMed  CAS  Google Scholar 

  21. Essig M, Engenhart R, Knopp MV, et al.: Cerebral arteriovenös malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 1996, 14:227–233.

    Article  PubMed  CAS  Google Scholar 

  22. Essig M, Reichenbach JR, Schad LR, et al.: High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 1999, 17:1417–1425.

    Article  PubMed  CAS  Google Scholar 

  23. Ostertun B, Solymosi L: Magnetic resonance angiography of cerebral developmental venous anomalies: its role in differential diagnosis. Neuroradiology 1993, 35:97–104.

    Article  PubMed  CAS  Google Scholar 

  24. Crecco M, Floris R, Vidiri A, et al.: Venous angiomas: plain and contrast-enhanced MRI and MR angiography. Neuroradiology 1995, 37:20–24.

    Article  PubMed  CAS  Google Scholar 

  25. Ross JS, Masaryk TJ, Modic MT, et al.: Intracranial aneurysms: evaluation by MR angiography. AJNR Am J Neuroradiol 1990, 11:449–455.

    PubMed  CAS  Google Scholar 

  26. Shigematsu Y, Korogi Y, Hirai T, et al.: 3D TOF turbo MR angiography for intracranial arteries: phantom and clinical studies. J Magn Reson Imaging 1999, 10:939–944.

    Article  PubMed  CAS  Google Scholar 

  27. Korogi Y, Takahashi M, Mabuchi N, et al.: Intracranial aneurysms: diagnostic accuracy of three-dimensional, Fouriertransform, time-of-flight angiography. Radiology 1994, 193:181–186.

    Article  PubMed  CAS  Google Scholar 

  28. Huston J III, Nichols DA, Luetmer PH, et al.: Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. AJNR Am J Neuroradiol 1994, 15:1607–1614.

    PubMed  Google Scholar 

  29. Huston J III, Rufenacht DA, Ehmann RL, Wiebers DO: Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography. Radiology 1991, 181:721–730.

    Article  PubMed  Google Scholar 

  30. Huston JD, Ehman RL: Comparison of time-of-flight and phase-contrast MR neuroangiographic techniques. Radiographies 1993, 13:5–19.

    Article  Google Scholar 

  31. Isoda H, Ramsay RG, Takehara Y, et al.: MR angiography of aneurysm models of various shapes and neck sizes. AJNR Am J Neuroradiol 1997, 18:1463–1472.

    PubMed  CAS  Google Scholar 

  32. Lang EW, Steffens JC, Link J, Mehdorn HM. The utility of contrast-enhanced MR-angiography for posterior fossa giant cerebral aneurysm management. Neurol Res 1998, 20:705–708.

    PubMed  CAS  Google Scholar 

  33. Wardlaw JM, White PM: The detection and management of unruptured intracranial aneurysms. Brain 2000, 123:205–221.

    Article  PubMed  Google Scholar 

  34. Wilms G, Guffens M, Gryspeerdt S, et al.: Spiral CT of intracranial aneurysms: correlation with digital subtraction and magnetic resonance angiography. Neuroradiology 1996, 38(suppl l):S20–S25.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Current Medicine, Inc.

About this chapter

Cite this chapter

Weber, J., Forsting, M. (2001). Magnetic Resonance Angiography. In: Fisher, M., Bogousslavsky, J. (eds) Current Review of Cerebrovascular Disease. Current Medicine Group, London. https://doi.org/10.1007/978-1-4684-0001-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0001-4_8

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4684-0003-8

  • Online ISBN: 978-1-4684-0001-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics