Skip to main content

The Cholinergic Basal Forebrain and its Telencephalic Targets: Interrelations and Implications for Cognitive Function

  • Chapter
Book cover Neurotransmitter Interactions and Cognitive Function

Abstract

The brain, the organ of cognition, possesses the remarkable ability to process, integrate, and transform information from diverse knowledge domains. The mechanisms by which it performs those operations have remained elusive, however, not only because of the intricacies of the neural systems involved but also because of the inherent complexities at the behavioral level of cognitive processes themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bigl V, Woolf NJ, Butcher LL (1982): Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    Article  Google Scholar 

  • Björklund A, Gage FH (1988): Grafts of fetal cholinergic neurons in rat models of aging and dementia. In: Aging and the Brain, Terry RD, ed. New York: Raven Press, pp 243–257

    Google Scholar 

  • Butcher LL, Semba K (1989): Reassessing the cholinergic basal forebrain: Nomenclature schemata and concepts. Trends Neurosci 12:483–485

    Article  Google Scholar 

  • Butcher LL, Woolf NJ (1986): Central cholinergic systems: Synopsis of anatomy and overview of physiology and pathology. In: The Biological Substrates of Alzheimer s Disease, Scheibel AB, Wechsler AF, eds. New York: Academic Press, pp 73–86

    Google Scholar 

  • Butcher LL, Woolf NJ (1987): Cholinergic neuronal regeneration can be modified by growth factors. In: Cellular and Molecular Basis for Cholinergic Function, Dowdall MJ, Hawthorne JN, eds. Chichester, UK: Ellis Horwood Press, pp 395–402

    Google Scholar 

  • Butcher LL, Woolf NJ (1989): Neurotrophic agents exacerbate the pathologic cascade of Alzheimer’s disease. Neurobiol Aging 10:557–570

    Article  Google Scholar 

  • DeFeudis FV (1974): Central Cholinergic Systems and Behaviour. London, UK: Academic Press

    Google Scholar 

  • Farris TW, Butcher LL (1991): Sparse regeneration after axotomy of cholinergic projections from pontine tegmentum to anterior thalamus. Soc Neurosci Abstr 17:942

    Google Scholar 

  • Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H. (1983): NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: Evidence for a physiological role of NGF in the brain? Dev Brain Res 9:45–52

    Article  Google Scholar 

  • Gould E, Butcher LL (1989): Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone. J Neurosci 9:3347–3358

    Google Scholar 

  • Hartikka J, Hefti F (1986): Effect of nerve growth factor on septal cholinergic neurons in mixed glial-neuronal cultures. Soc Neurosci Abstr 12:1099

    Google Scholar 

  • Hefti F (1986): Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    Google Scholar 

  • Hefti F, Dravid A, Hartikka J. (1984): Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res 293:305–311

    Article  Google Scholar 

  • Hefti F, Hartikka J, Eckenstein F, Gnahn H, Heumann R, Schwab M (1985): Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14:55–68

    Article  Google Scholar 

  • Hefti F, Hartikka J, Salvatierra A, Weiner WJ, Mash DC (1986): Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 69:37–41

    Article  Google Scholar 

  • Irle E, Markowitsch HJ (1986): Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates. J Hirnforsch 27:343–367

    Google Scholar 

  • Korn H, Faber DS (1979): Electrical interactions between vertebrate neurons: Field effects and electrotonic coupling. In: The Neurosciences Fourth Study Program, Schmitt FO, Worden FG, eds. Cambridge, MA: MIT Press, pp 333–358

    Google Scholar 

  • Korsching S, Auburger G, Heumann R, Scott J, Thoenen H (1985): Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J 4:1389–1393

    Google Scholar 

  • Luine VN (1985): Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 89:484–490

    Article  Google Scholar 

  • Luiten PGM, Gaal G, Gaykema RPA, Strosberg AD, Schroeder H (1989): Immunohis-tochemical demonstration of muscarinic acetylcholine receptor proteins in rat and human neocortex. Interactions with cortical projections from the magnocellular basal nucleus. Soc Neurosci Abstr 15:811

    Google Scholar 

  • Lynch G, Matthews DA, Mosko S, Parks T, Cotman C (1972): Induced acetylcholines-terase-rich layer in rat dentate gyrus following entorhinal lesions. Brain Res 42:311–318

    Article  Google Scholar 

  • Manthorpe M, Nieto-Sampedro M, Skaper SD, Lewis ER, Barbin G, Longo FM, Cotman CW, Varon S (1983): Neuronotrophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity. Brain Res 267:47–56

    Article  Google Scholar 

  • Milner TA (1991): Cholinergic neurons in the rat septal complex: Ultrastructural characterization and synaptic relations with catecholaminergic terminals. J Comp Neurol, 314:37–54

    Article  Google Scholar 

  • Oh JD, Woolf NJ, Roghani A, Edwards RH, Butcher LL (1992): Cholinergic neurons in the rat central nervous system demonstrated by in situ hybridization of choline acetyltransferase mRNA. Neuro science, 47:807–822

    Google Scholar 

  • Pedata F, Giovannelli L, Pepeu G (1984): GM1 ganglioside facilitates the recovery of high-affinity choline uptake in the cerebral cortex of rats with a lesion of the nucleus basalis magnocellularis. J Neurosci Res 12:421–427

    Article  Google Scholar 

  • Price JL, Stern R (1983): Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res 269:352–356

    Article  Google Scholar 

  • Purves D, Voyvodic JT (1987): Imaging mammalian nerve cells and their connections over time in living animals. Trends Neurosci 10:398–404

    Article  Google Scholar 

  • Richardson PM, Verge Issa VMK, Riopelle RJ (1986): Distribution of neuronal receptors for nerve growth factor in the rat. J Neurosci 6:2312–2321

    Google Scholar 

  • Saper CB (1984): Organization of cerebral cortical afferent systems in the rat. I. Magnocellular basal nucleus. J Comp Neurol 222:313–342

    Article  Google Scholar 

  • Seiler M, Schwab ME (1984): Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300:33–39

    Article  Google Scholar 

  • Varon S, Manthorpe M (1984): Trophic and neurite-promoting factors for cholinergic neurons. In: Cellular and Molecular Biology of Neuronal Development, Black IB, ed. New York: Plenum Press, pp 251–275

    Chapter  Google Scholar 

  • Wendt JS, Ayyad KA (1985): AChE-positive axonal sprouting and regeneration across scar tissue in adult rat brain. Soc Neurosci Abstr 11:975

    Google Scholar 

  • Woolf NJ (1991): Cholinergic systems in mammalian brain and spinal cord. Progr Neurobiol 37:475–524

    Article  Google Scholar 

  • Woolf NJ, Butcher LL (1989): Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum. Brain Res Bull 23:519–540

    Article  Google Scholar 

  • Woolf NJ, Butcher LL (1990): Dysdifferentiation of structurally plastic neurons initiates the pathologic cascade of Alzheimer’s disease: Toward a unifying hypothesis. In: Brain Cholinergic Systems, Steriade M, Biesold D, eds. Oxford, UK: Oxford University Press, pp 387–438

    Google Scholar 

  • Woolf NJ, Butcher LL (1991): The cholinergic basal forebrain as a cognitive machine. In: Activation to Acquisition: Functional Aspects of the Basal Forebrain Cholinergic System, Richardson RT, ed. Boston: Birkhäuser Press, pp 347–380

    Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1983): Cholinergic projections from the basal forebrain to the frontal cortex: A combined fluorescent tracer and immunohistochem-ical analysis. Neurosci Lett 40:93–98

    Article  Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1984): Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Res Bull 13:751–784

    Article  Google Scholar 

  • Woolf NJ, Gould E, Butcher LL (1989): Nerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon. Neuroscience 30:143–152

    Article  Google Scholar 

  • Yarbrough GG (1983): Thyrotropin releasing hormone and CNS cholinergic neurons. Life Sci 33:111–118

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Butcher, L.L. (1992). The Cholinergic Basal Forebrain and its Telencephalic Targets: Interrelations and Implications for Cognitive Function. In: Levin, E.D., Decker, M.W., Butcher, L.L. (eds) Neurotransmitter Interactions and Cognitive Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9843-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9843-5_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9845-9

  • Online ISBN: 978-1-4615-9843-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics