Skip to main content

Visualization of Ionic Channels in a Lipid Membrane by Means of a Scanning Tunnelling Microscope and Future Possibilities for Application

  • Chapter
  • 119 Accesses

Abstract

Initially intented for the study of crystalline electroconductive surfaces, a scanning tunneling microscope (STM) has found an application in studies of the structure and electronic properties of organic molecules and biological objects (Binnig and Rohrer, 1986). Since 1985, when the work of Barto et al. on STM-visualization of viruses was published, there appeared a number of papers on STM studies of various organic and biological objects including simple organic molecules, lipid membranes, proteins, viruses, ets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mohammad A, Smith C, Al-Saffar IS and Slifkin MA (1990): Thin organic films for electronics applications. Thin Solid Films 189(1): 175–181.

    Article  Google Scholar 

  • Amrein M, Stasiak A, Gross H, Stoll E and Travaglini G (1988): Scunning tunneling microscopy images of metalcoated bacteriophages and uncoated double-stranded DNA. Science 240: 514–516.

    Article  Google Scholar 

  • Bando H, Kashiwaya S, Tokumoto H, Anzai N, Kinoshita N and Kajimura K (1990): Tunneling spectroscopy on an organic superconductors (BEDT-TTF) 2Cu (NCS) 2. J. Vac. Sci. Technol. A8(l): 479–483.

    Google Scholar 

  • Baro AM, Miranda R, Alaman J, Garsia N, Binnig G, Rohrer H, Gerber Ch and Carrascosa JL (1985): Determination of surfase topography of biological specimens at high resolution by scanning tunneling microscopy. Nature 315: 253–254.

    Article  Google Scholar 

  • Binnig G, and Rohrer H (1986): Scanning tunneling microscopy. IBM J. Res. Develop. 30: 355–369.

    Google Scholar 

  • Braun HG, Fuchs H and Schrepp W (198): Surface structure investigation of Langmuir-Blodgett films. Thin Solid Films 159: 301–314.

    Google Scholar 

  • Coombs JH, Pethica JB and Weiland ME (1988): Scanning tunneling microscopy of thin organic films. Thin Solid Films 159: 293–299.

    Article  Google Scholar 

  • Cricenti A, Selci S, Felici A, Generosi R, Gori E, Djaczenko W and Chiarotti G (1989): Molecular structure of DNA by scanning tunneling microscopy. Science 245: 1226–1227.

    Article  Google Scholar 

  • Eng L, Hidber HR, Rosenthaler L, Staufer U, Wiesendanger R, Gunterodt H and Tamm L (1988): Summary Abstract: Dipalmitoilphosphatidylcholine-Langmuir-Blodgett films on various substrates: Si(111), Au, Sn. J. Vac. Sci. Technol. A6 (2): 358–362.

    Google Scholar 

  • Fuchs H, Akari S and Dransfeld K (1990): Molecular resolution of Langmuir-Blodgett monolayers on tungsten diselenide by scanning tunneling microscopy. Z. Phys. B.-Cond. Matter, 80 (3): 389–392.

    Article  Google Scholar 

  • Golubok AO, Davydov DN, Masalov SA, Nakhabtsev DV and Timofeev VA (1989): Scanning tunneling microscope observation of graphite surface at ambient pressure. Surface, physics, chemistry, mechanics 3: 146–149.

    Google Scholar 

  • Guckenberger R, Kosslinger C, Gatz R, Breu H, Levai N and Baummeister W (1988): A scanning tunneling microscope (STM) for biological applications: design and performance. Ultramicroscopy 25: 111–112.

    Article  Google Scholar 

  • Hameroff SR, Simic-Krstic J, Kelley MF, Volker MA, He JD, Dereniak EL, McCuskey RS and Schneiker CW (1989): Conditions for microtubule stabilization. J. Vac. Sci. Technol. A7 (4): 2890–2894.

    Google Scholar 

  • Haydon DA and Hladky SB (1972): Ion transport across thin lipid membranes: a critical discussion of mechanism in selected systems. Quarterly reviews of Biophysics 5: 187–283.

    Article  Google Scholar 

  • Horber JKH, Lang CA, Hansch TW, Heckl WM and Mohwald H (1988): Scanning tunneling microscopy of lipid films and embedded biomolecules. Chem. Phys. Lett. 145(2): 151–158.

    Article  Google Scholar 

  • Kates M (1972): Techniques of lipidology. North-Holland Publishing Company, Amsterdam, London/American Elsevier Publishing Co., Inc., New York.

    Google Scholar 

  • Keller RW, Dunlap D, Bustamante C, Keller DJ, Garcia RG, Gray C and Maestre MF (1990): Scanning tunneling microscopy images of metal-coated bacteriophages and uncoated double-stranded DNA. J. Vac. Sci. Technol. A8 (1): 706–712.

    Google Scholar 

  • Kolomytkin OV, Golubok AO, Davydov DN, Timofeev VA, Vinogradova SA and Tipisev SYa (1991): Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope. Biophys. J. 59: 889–893.

    Article  Google Scholar 

  • Kolomytkin OV and Kuznetsov VI (1986): Incorporation of GABA receptor into planar bilayer. Studia biophysica 115: 157–164.

    Google Scholar 

  • Kolomytkin OV, Kuznetsov VI and Akoev IG (1989): Microwaves affect the function of reconstituted and native receptor membranes of the brain. In: Charge and Field Effects in biosystems-2. Allen MJ, Cleary SF and Hawkridge FM, eds. New York and London: Plenum Press.

    Google Scholar 

  • Lang CA, Horber JKH, Hansh TW, Hechl W and Mohwald H. (1988): Scanning tunneling microscopy of Langmuir-Blodgett films on graphite. J. Vac. Sci. Technol. A6(2): 368–370.

    Google Scholar 

  • Lindsay SM and Barris B (1988): Imaging deoxyribose nucleic acid molecules on a metal surface under water by scanning tunneling microscopy. J. Vac. Sci. Technol. A. 6: 544–547.

    Article  Google Scholar 

  • Mizutani W, Shinego M, Sakakibara Y, Kajimura K, Ono M, Tanishima S, Ohno K and Toshima N (1990): Scanning tunneling spectroscopy study of adsorbeb molecules. J. Vac. Sci. Technol. A8 (1): 675–678.

    Google Scholar 

  • Mizutani W, Shinego M, Ono M and Kajimura K (1990): Voltage-dependent scanning tunneling microscopy images of liquid crystals on graphite. Appl. Phys. Lett. 56 (20): 1974–1976.

    Article  Google Scholar 

  • Phillips MC and Chapman D (1968): Monolayer characteristics of saturated 1,2-diacylphosphatidylcholines and phosphatidylethanolamines at the air-water interface. Biochim. Biophys. Acta. 163: 301–313.

    Article  Google Scholar 

  • Rohler H. (1990): Research report: Scanning tunneling microscopy — methods and variations. Solid State Physics.

    Google Scholar 

  • Salmeron M, Beebe T, Odriozda J, Wilson T, Ogletree DF and Siekhaus W. (1990): Imaging of biomolecules with scanning tunneling microscope: Problems and prospects. J. Vac. Sci. Technol. A8 (1): 635–641.

    Google Scholar 

  • Smith DPE, Kirk MD and Quate CF (1987): Molecular images and vibration spectroscopy of sorbic acid with the scanning tunneling microscope. J. Chem. Phys. 86: 6034–6038.

    Article  Google Scholar 

  • Smith DPE, Briant A, Quate C, Rabe JP, Gerber C and Swalen JD (1987): Images of a lipid bilayer at molecular resolution by scanning microscopy. Proc. Natl. Acad. Sci. USA, Biophysics 84: 969–972.

    Article  Google Scholar 

  • Smith DPE, Horber JKH, Binnig G and Nejoh H (1990): Structure, registry and imaging mechanism of alkylcyanobiphenil molecules by tunneling microscopy. Nature 344: 641–644.

    Article  Google Scholar 

  • Stark G, Strassle M and Takacz Z (1986): Temperature-jump and voltage-jump experiments at planar lipid membranes support an aggregationl (micellar) model of gramicidin A ion channel. J. Membrane Biol. 89: 23–37.

    Article  Google Scholar 

  • Stemmer A, Hefti A, Aebi U and Engel A (1988): Scanning tunneling and transmission electron microscopy on identical areas of biological specimens. Ultramicroscopy 25: 111–112.

    Article  Google Scholar 

  • Urry DW (1972): A molecular theory of ion-conducting channels: a field-dependent transition between conducting and nonconducting conformation. Proc. Natl. Acad. Sci. USA 69: 1610–1614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Kolomytkin, O.V., Golubok, A.O., Tipisev, S.Y., Vinogradova, S.A. (1992). Visualization of Ionic Channels in a Lipid Membrane by Means of a Scanning Tunnelling Microscope and Future Possibilities for Application. In: Allen, M.J., Cleary, S.F., Sowers, A.E., Shillady, D.D. (eds) Charge and Field Effects in Biosystems—3. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9837-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9837-4_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9839-8

  • Online ISBN: 978-1-4615-9837-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics