Skip to main content

Cardiovascular Actions of Angiotensin II in the Ventrolateral Medulla

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation
  • 45 Accesses

Abstract

Angiotensin II (ANG II) has received considerable attention as a humoral regulator of cardiovascular homeostasis because of its well known actions at resistance vessels, its stimulatory effects on neurohormonal systems and its role as a potent dipsogen via actions in the hypothalamus. Furthermore, evidence obtained over the last 25 years has shown that circulating Ang II acts at restricted sites in the central nervous system lacking an intact blood- brain barrier to influence the regulation of the autonomic nervous system. ANG II enhances the activity of the sympathetic nervous system by an action of the peptide at the area postrema. Many aspects of ANG II involvement in circulatory homeostasis are directly related to the plasma concentration of this peptide. However, local tissue renin-angiotensin systems (RAS) have been recognized as contributing to the regulation of arterial pressure. Evidence shows that the brain contains a functional RAS. Angiotensinogen is a major protein component of cerebrospinal fluid (Brosnihan et al., 1987) and glial cells contain abundant mRNA necessary for the synthesis of the renin substrate (Deschepper et al., 1986). Immunohistochemical and anatomical studies have shown that ANG II and binding sites for this peptide are found in brain regions important in the regulation of hydromineral balance and cardiovascular function (Aguirre et al., 1989; Diz et al., 1986; Lind et al., 1985a,b; Speth et al., 1985). In the hypothalamus, circumventricular organs that respond to blood-borne ANG II by eliciting dipsogenic and pressor responses may utilize neural pathways exhibiting ANG II immunoreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal SK, Gelsema AJ, Calaresu FR (1989): Neurons in rostral vlm are inhibited by chemical stimulation of caudal vlm in rats. Am j physiol 257: R265–R270.

    Google Scholar 

  • Agarwal SK, Gelsema AJ, Calaresu FR (1990): inhibition of rostral vlm by baroreceptor activation is relayed through caudal vlm. Am j physiol 258: R1271–R1278.

    Google Scholar 

  • Aguirre JA, Covenas R. Croix D,. (1989): immunocytochemical study of angiotensinii fibres and cell bodies in the brainstem respiratory areas of the cat. Brain res 489: 311–317.

    Google Scholar 

  • Allen AM, Chai SY, Clevers J, Mckinley MJ, Paxinos G, Mendelsohn FAO (1988): localization and characterization of angiotensin ii receptor binding and angiotensin converting enzyme in the human medulla oblongata. J comp neurol 269: 249–264.

    Google Scholar 

  • Allen AM, Chai SY, Sexton PM,. (1987): angiotensin ii receptors and angiotensin converting enzyme in the medulla oblongata. Hypertension 9:111- 198–205.

    Google Scholar 

  • Allen AM, Dampney RAL, mendelsohn fao (1988): angiotensin receptor binding and pressor effects in cat subretrofacial nucleus. Am J Physiol 255: H1011–H1017.

    Google Scholar 

  • Amendt K, Czachurski J, Dembowsky K, Seller H (1979): Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1: 103–117.

    Article  Google Scholar 

  • Andreatta SH, Averill DB, Santos RAS, Ferrario CM (1988): The ventrolateral medulla: a new site of the action of the reninangiotensin system. Hypertension 11 (suppl I):I-163-1–166.

    Google Scholar 

  • Averill DB, Andreatta S, Ferrario CM (1991): Angiotensin II acts at the rostral ventrolateral medulla to augment sympathetic activity. Peptides (Submitted).

    Google Scholar 

  • Averill DB, Diz Dl, Barnes KL, Ferrario CM (1987): Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Res 414: 294–300.

    Article  Google Scholar 

  • Barman SM, Gebber GL (1985): Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol 53: 1551–1566.

    Google Scholar 

  • Blessing WW (1988): Depressor neurons in rabbit caudal medulla act via GAB A receptors in rostral medulla. Am J Physiol 254: H686–H692.

    Google Scholar 

  • Brosnihan KB, Diz DI, Schiavone MT, Averill DB, Ferrario CM (1987): Approaches to establishing angiotensin II as a neurotransmitter. In: Brain Peptides and Catecholamines in Cardiovascular Regulation, Buckley JP, Ferrario CM, eds. New York: Raven Press, pp 313–328.

    Google Scholar 

  • Brown DA, Constanti A, Marsh S (1980): Angiotensin mimics the action of muscarinic agonists on rat sympathetic neurones. Brain Res 193: 614–619.

    Article  Google Scholar 

  • Brown DL, Guyenet PG (1984): Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247: R1009–R1016.

    Google Scholar 

  • Brown DL, Guyenet PG (1985): Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 56: 359–369.

    Google Scholar 

  • Calaresu FR, Yardley CP (1988): Medullary basal sympathetic tone. Annu Rev Physiol 50: 511–524.

    Article  Google Scholar 

  • Campagnole-Santos MJ, Diz DI, Ferrario CM (1988): Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension 11 (suppl I):I- 167–1–171.

    Google Scholar 

  • Casto R, Phillips MI (1984a): Cardiovascular actions of microinjections of angiotensin II in the brain stem of rats. Am J Physiol 247: R811–R816.

    Google Scholar 

  • Casto R, Phillips MI (1984b): Mechanism of pressor effects by angiotensin in the nucleus tractus solitarius of rats. Am J Physiol 247: R575–R581.

    Google Scholar 

  • Casto R, Phillips MI (1985): Neuropeptide action in nucleus tractus solitarius: angiotensin specificity and hypertensive rats. Am J Physiol 249: R341–R347.

    Google Scholar 

  • Caverson MM, Ciriello J, Calaresu FR (1983): Direct pathway from cardiovascular neurons in the ventrolateral medulla to the region of the intermediolateral nucleus of the upper thoracic cord: an anatomical and electrophysiological investigation in the cat. J Auton Nerv Syst 9: 451–475.

    Article  Google Scholar 

  • Chevillard C, Saavedra JM (1982): Distribution of angiotensin-converting enzyme activity in specific areas of the rat brain stem. J Neurochem 38: 281–284.

    Article  Google Scholar 

  • Ciriello J, Caverson MM, Polosa C (1986): Function of the ventrolateral medulla in the control of the circulation. Brain Res Rev 11: 359–391.

    Article  Google Scholar 

  • Covenas R, Fuxe K, Cintra A, Aguirre JA, Goldstein M, Ganten D (1990): Evidence for the existence of angiotensin II-like immunoreactivity in subpopulations of tyrosine hydroxylase immunoreactive neurons in the A1 and CI area of the ventral medulla of the male rat. Neurosci Lett 114: 160–166.

    Article  Google Scholar 

  • Dampney RAL, Blessing WW, Tan E (1988): Origin of tonic GABAergic inputs to vasopressor neurons in the subretrofacial nucleus of the rabbit. J Auton Nerv Syst 24: 227–239.

    Article  Google Scholar 

  • Deschepper CF, Bouhnik J, Ganong WF (1986): Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res 355:195– 198.

    Google Scholar 

  • Dittmar C, (1873): Uber die lage des sogenannten gefasscentrums der medulla oblongata. Ber Verh Saechs Wiss Leipzig Phys Kl 25: 449–479.

    Google Scholar 

  • Diz DI, Barnes KL, Ferrario CM (1984): Hypotensive action of angiotensin II microinjected into the dorsal motor nucleus of the vagus. J Hypertens 2 (suppl 3): 53–56.

    Google Scholar 

  • Diz Dl, Barnes KL, Ferrario CM (1986): Contribution of the vagus nerve to angiotensin II binding sites in the canine medulla. Brain Res Bull 17: 497–505.

    Article  Google Scholar 

  • Feldberg W, Guertzenstein PG (1972): A vasodepressor effect of pentobarbital sodium. J Physiol (Lond) 224: 83–103.

    Google Scholar 

  • Fink GD, Bruner CA, Mangiapane ML (1987a): Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension 9: 355–361.

    Google Scholar 

  • Fink GD, Pawloski CM, Blair ML, Mangiapane ML (1987b): The area postrema in deoxycorticosterone-salt hypertension in rats. Hypertension 9:111-206-111–209.

    Google Scholar 

  • Folkow B (1982): Physiological aspects of primary hypertension. Physiol Rev 62: 347–504.

    Google Scholar 

  • Gehlert DR, Speth RC, Wamsley JK (1986): Distribution of [125I]angiotensin II binding sites in the rat brain: a quantitative autoradiographic study. Neuroscience 18: 837–856.

    Article  Google Scholar 

  • Gordon FJ (1987): Aortic baroreceptor reflexes are mediated by NMD A receptors in caudal ventrolateral medulla. Am J Physiol 252: R628–R633.

    Google Scholar 

  • Granata AR, Kumada M, Reis DJ (1985): Sympathoinhibition by Al-noradrenergic neurons is mediated by neurons in the CI area of the rostral medulla. J Auton Nerv Syst 14: 387–395.

    Article  Google Scholar 

  • Granata AR, Numao Y, Kumada M, Reis DJ (1986): A1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of CI area in rat brainstem. Brain Res 377: 127–146.

    Article  Google Scholar 

  • Guertzenstein PG (1973): Blood pressure effects obtained by drugs applied to the ventral surface of the brain stem. J Physiol (Lond) 229: 395–408.

    Google Scholar 

  • Guertzenstein PG, Lopes OU (1984): Cardiovascular responses evoked from the nicotine-sensitive area on the ventral surface of the medulla oblongata in the cat. J Physiol (Lond) 347: 345–360.

    Google Scholar 

  • Guertzenstein PG, Silver A (1974): Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol (Lond) 242: 489–503.

    Google Scholar 

  • Martle DK, Brody MJ (1984): The angiotensin II pressor system of the rat fore- brain. Circ Res 54: 355–366.

    Google Scholar 

  • Hartle DK, Lind RW, Johnson AK, Brody MJ (1982): Localization of the anterior hypothalamic angiotensin II pressor system. Hypertension 4 (suppl II): II-159-11–165.

    Google Scholar 

  • Hayashi J, Takeda K, Kawasaki S, et al. (1988): Gentral attentuation of baroreflex by angiotensin II in normotensive and spontaneously hypertensive rats. Am J Hypertens 1: 15S–22S.

    Google Scholar 

  • Jones SW (1987): Luteinizing hormone-releasing hormone as a neurotransmitter in bullfrog sympathetic ganglia. Ann NY Acad Sei 519: 310–322.

    Article  Google Scholar 

  • Judy WV, Farrell SK (1979): Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension 1: 604–614.

    Google Scholar 

  • Lind RW, Swanson LW, Bruhn TO, Ganten D (1985a): The distribution of angiotensin II-immunoreactive cells and fibers in the paraventriculo-hypophysial system of the rat. Brain Res 338: 81–89.

    Article  Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985b): Organization of angiotensin II im- munoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24.

    Article  Google Scholar 

  • Mangiapane ML, Skoog KM, Rittenhouse P, Blair ML, Sladek CD (1989): Lesion of the area postrema region attenuates hypertension in spontaneously hypertensive rats. Circ Res 64: 129–135.

    Google Scholar 

  • Mann JFE, Phillips MI, Dietz R, Haebara H, Ganten D (1978): Effects of central and peripheral angiotensin blockade in hypertensive rats. Am J Physiol 234: H629–H637.

    Google Scholar 

  • McDonald W, Wickre C, Aumann S, Ban S, Moffitt B (1980): The sustained antihypertensive effect of chronic cerebroventricular infusion of angiotensin antagonist in spontaneously hypertensive rats. Endocrinology 107: 1305–1308.

    Article  Google Scholar 

  • Mendelsohn FAO, Allen AM, Clevers J, Denton DA, Tarjan E, McKinley MJ (1988): Localization of angiotensin II receptor binding in rabbit brain by in vitro autoradiography. J Comp Neurol 270: 372–384.

    Article  Google Scholar 

  • Minson JB, Chalmers JP, Caon AC, Renaud B (1987): Separate areas of rat medulla oblongata with populations of serotonin- and adrenaline-containing neurons alter blood pressure after L-glutamate stimulation. J Auton Nerv Syst 19: 39–50.

    Article  Google Scholar 

  • Mogenson GJ, Kucharczyk J (1978): Central neural pathways for angiotensin- induced thirst. Fed Proc 37: 2683–2688.

    Google Scholar 

  • Muratani H, Averiii DB, Ferrario CM (1991): Effect of angiotensin II in the caudal ventrolateral medulla of spontaneously hypertensive rats. (In press) Am J Physiol.

    Google Scholar 

  • Okuno T, Nagahama S, Lindheimer MD, Oparil S (1983): Attenuation of the development of spontaneous hypertension in rats by chronic central administration of Captopril. Hypertension 5: 653–662.

    Google Scholar 

  • Owsjannikow P, (1871): Die tonischen und reflectorischen centren der gefassnerven. Ber Verh Saechs Wiss Leipzig Math PhysKl 23: 135–143.

    Google Scholar 

  • Punnen S, Krieger AJ, Sapru HN (1984): Exaggerated blood pressure responses to microinjections of angiotensin-II into the medullary pressor area of spontaneously hypertensive rats. Fed Proc 43: 443 (abstract).

    Google Scholar 

  • Renaud LP, Jhamandas JH, Buijis R, Raby W, Rändle JCR (1988): Cardiovascular input to hypothalamic neurosecretory neurons. Brain Res Bull 20: 771–777.

    Article  Google Scholar 

  • Santos RAS, Brosnihan KB, Chappell MC, et al. (1988): Converting enzyme activity and angiotensin metabolism in the dog brain stem. Hypertension 11 (suppl I):I-153-I–157.

    Google Scholar 

  • Sasaki S, Dampney RAL (1990): Tonic cardiovascular effects of angiotensin II in the ventrolateral medulla. Hypertension 15: 274–283.

    Google Scholar 

  • Smith JK, Barron KW (1990a): Cardiovascular effects of L-glutamate and tetrodotoxin microinjected into the rostral and caudal ventrolateral medulla in normotensive and spontaneously hypertensive rats. Brain Res 506: 1–8.

    Article  Google Scholar 

  • Smith JK, Barron KW (1990b): Gabaergic responses in ventrolateral medulla in spontaneously hypertensive rats. Am J Physiol 258: R450–R456.

    Google Scholar 

  • Speth RC, Wamsley JK, Gehlert DR, Chernicky CL, Barnes KL, Ferrario CM (1985): Angiotensin II receptor localization in the canine CNS. Brain Res 326: 137–143.

    Article  Google Scholar 

  • Sun MK, Guyenet PG (1985): GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol 249: R672–R680.

    Google Scholar 

  • Unger T, Badoer E, Ganten D, Lang RE, Rettig R (1988): Brain angiotensin: pathways and pharmacology. Circulation 77 (suppl I):I-40-I–54.

    Google Scholar 

  • Unger T, Kaufmann-Buhler I, Scholkens B, Ganten D (1981): Brain converting enzyme inhibition: a possible mechanism for the antihypertensive action of Captopril in spontaneously hypertensive rats. Eur J Pharmacol 70:467–478,

    Google Scholar 

  • Urbanski RW, Sapru HN (1988a): Evidence for a sympathoexcitatory pathway from the nucleus tractus solitarii to the ventrolateral medullary pressor area. J Auton Nerv Syst 23: 161–174.

    Article  Google Scholar 

  • Urbanski RW, Sapru HN (1988b): Putative neurotransmitters involved in medullary cardiovascular regulation. J Auton Nerv Syst 25: 181–193.

    Article  Google Scholar 

  • Willette RN, Barcas PP, Krieger AJ, Sapru HN (1983): Vasopressor and depressor areas in the rat medulla. Identification by microinjection of 1-glutamate. Neuropharmacology 22: 1071–1079.

    Article  Google Scholar 

  • Willette RN, Barcas PP Krieger AJ, Sapru HN (1984): Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J Pharmacol Exp Ther 230: 34–39.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Averill, D.B., Muratani, H., Madalin, K.J., Ferrario, C.M. (1991). Cardiovascular Actions of Angiotensin II in the Ventrolateral Medulla. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9834-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9834-3_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9836-7

  • Online ISBN: 978-1-4615-9834-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics