Skip to main content

Amine Transmitters and their Associated Second Messenger Systems

  • Chapter
Book cover Comparative Invertebrate Neurochemistry

Abstract

The biogenic amines form an important group of compounds, based on the phenylethylamine or indolamine structures (Figure 4.1). Catecholamines are widely distributed throughout the animal kingdom, as they have been detected in all the major groups of invertebrates and vertebrates (see Welsh, 1972). Serotonin has been detected in all classes of invertebrates and vertebrates, with the exception of the Echinoderms (Robertson and Juorio, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W.B. and Levitan, I.B. (1982) Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R15 Proc. Natl Acad. Sci. USA 79, 3877–80

    Article  Google Scholar 

  • Bandle, E.F. and Levitan, I.B. (1977) Cyclic-AMP-stimulated phosphorylation of a high molecular weight endogenous protein substrate in sub-cellular fractions of molluscan nervous systems. Brain Res. 125, 325–31

    Article  Google Scholar 

  • Barker, D.L., Molinoff, P.H. and Kravitz, E.A. (1972) Octopamine in the lobster nervous system. Nature New Biol. 236, 61–2

    Article  Google Scholar 

  • Beam, K.G., Nestler, E.J. and Greengard, P. (1977) Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle. Nature (Lond.) 267, 534–6

    Article  Google Scholar 

  • Berridge, M.J. (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849–58

    Google Scholar 

  • Berridge, M.J., Buchan, P.B. and Heslop, J.P. (1984) Relationship of polyphosphoinositide metabolism to the hormonal activation of the insect salivary gland by 5-hydroxytryptamine. Molec. Cell. Endocrinol. 36, 37–42

    Article  Google Scholar 

  • Berridge, M.J., Dawson, R.M.C., Downes, C.P., Heslop, J.P. and Irvine, R.F. (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473–82

    Google Scholar 

  • Berridge, M.J. and Heslop, J.P. (1982) Receptor mechanisms mediating the action of 5-hydroxytryptamine. In: Neuropharmacology of insects. Ciba Foundation Symposium, Vol. 88, pp. 260–70.

    Google Scholar 

  • Pitman, London, Berridge, M.J. and Irvine, R.F. (1984) Inositol trisphosphate a novel second messenger in cellular signal transduction. Nature (Lond.) 312, 315–21

    Article  Google Scholar 

  • Blaschko, H. and Hope, D.P. (1957) Observations on the distribution of amine oxidase in invertebrates. Arch. Biochem. Biophys. 69, 10–15

    Article  Google Scholar 

  • Bodnaryk, R.P. (1979a) Characterisation of an octopamine-sensitive adenylate cyclase from insect brain (Mamestra configurato Wlk). Can. J. Biochem. 57, 226–32

    Article  Google Scholar 

  • Bodnaryk, R.P. (1979b) Identification of specific dopamine- and octopamine- sensitive adenylate cyclases in the brain of Mamestra configurata Wlk. Insect Biochem. 9, 155–62

    Article  Google Scholar 

  • Bodnaryk, R.P. (1979c) Basal, dopamine and octopamine-stimulated adenylate cyclase activity in the brain of the moth, Mamestra configurata, during its metamorphosis. J. Neurochem. 33, 275–82

    Article  Google Scholar 

  • Boyer, J.L., Garcia, A., Posadas, C. and Garcia-Sainz, J.A. (1984) Differential effect of pertussis toxin on the affinity state for agonists of renal a,- and a2- adrenoreceptors. J. Biol. Chem. 259, 8076–9

    Google Scholar 

  • Breer, H. and Knipper, M. (1985) Synaptosomes and neuronal membranes from insects. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 125–55. Springer Verlag, Berlin

    Chapter  Google Scholar 

  • Brown, J.E., Rubin, L.J., Ghalayini, A.J., Tarver, A.P., Irvine, R.F., Berridge, M.J. and Anderson, R.E. (1984) Myoinositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature (Lond.) 311, 160–2

    Article  Google Scholar 

  • Brunelli, M., Castellucci, V. and Kardel, E.R. (1976) Synaptic facilitation and behavioural sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194, 1178–81

    Article  Google Scholar 

  • Burgisser, E., DeLean, A. and Lefkowitz, R.J. (1982) Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptors by guanine nucleotides. Proc. Natl. Acad. Sci. USA 79, 1734–6

    Article  Google Scholar 

  • Burke, D.E. and DeLorenzo, R.J. (1982) Ca2+ and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system. J. Neurochem. 38, 1205–17

    Article  Google Scholar 

  • Bustos, G. and Roth, R.H. (1979) Does cyclic AMP-dependent phosphorylation account for the activation of tyrosine hydroxylase produced by depolarization of dopaminergic neurons? Biochem. Parmacol. 28, 3026–8

    Article  Google Scholar 

  • Carlsson, A., Kerhr, W., Lindquist, M., Magnusson, T. and Atack, C.V. (1972) Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev. 24, 371–84

    Google Scholar 

  • Chang, R., Tran, V.T. and Snyder, S.H. (1980) Neurotransmitter receptor localizations: brain lesion induced alterations in benzodiazepine, GAB A, (3- adrenergic and histamine H2 receptor binding. Brain Res. 190, 95–110

    Article  Google Scholar 

  • Chesselet, M.F. (1984) Presynaptic regulation of neurotransmitter release in the brain. Neuroscience 12, 347–75

    Article  Google Scholar 

  • Cheung, W.Y. (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207, 19–27

    Article  Google Scholar 

  • Cheung, W.Y. (1981) Discovery and recognition of calmodulin: a personal account. J. Cyclic Nucleotide Res. 7, 71–84

    Google Scholar 

  • Chneiweiss, H., Prochiantz, A., Glowinski, J. and Premont, J. (1984) Biogenic amine-sensitive adenylate cyclase in primary cultures of neuronal or glial cells from mesencephalon. Brain Res. 302, 363–70

    Article  Google Scholar 

  • Cooper, J.R., Bloom, F.E. and Roth, R.H. (1986) Catecholamines I: General aspects. In: The Biochemical basis of neuropharmacology, 5th edn, pp. 203–58, Oxford University Press, New York and Oxford

    Google Scholar 

  • Cooper, J.R. and Meyer, E.M. (1984) Possible mechanisms involved in the release and modulation of neuroactive agents. Neurochem. Int. 6, 419–33

    Article  Google Scholar 

  • Corda, M.G., Casu, M. and Biggio, G. (1979) Decrease of cyclic GMP in cerebellar cortex by intrastriatal (-)sulpiride. Eur. J. Pharmacol. 55, 327–30

    Article  Google Scholar 

  • Cottrell, G.A. and Powell, B. (1971) Formation of serotonin by isolated serotonin- containing neurones and by isolated non-amine-containing neurones. J. Neurochem. 18, 1695–7

    Article  Google Scholar 

  • Coyle, J.T. and Henry, D. (1973) Catecholamines in fetal and newborn rat brain. J. Neurochem. 21, 61–7

    Article  Google Scholar 

  • Cumming, R., Eccleston, D. and Steiner, A. (1977) Immunohistochemical localization of cyclic GMP in rat cerebellum. J. Cyclic Nucleotide Res. 3, 275–82

    Google Scholar 

  • DeLorenzo, R.J. (1980) Role of calmodulin in neurotransmitter release and synaptic function. Ann. NY Acad. Sci. 356, 92–109

    Article  Google Scholar 

  • Dewhurst, S.A., Croker, S.G., Ikeda, K. and McCaman, R.E. (1972) Metabolism of biogenic amines in Drosophila nervous tissue. Comp. Biochem. Physiol. 43B, 975–81

    Google Scholar 

  • Dolphin, A.C. and Greengard, P. (1981) Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain. Nature (Lond.) 289, 76–9

    Article  Google Scholar 

  • Donnellan, J.F., Alexander, K. and Chandeik, R. (1976) The isolation of cholinergic terminals from flesh fly heads. Insect Biochem. 6, 419–23

    Article  Google Scholar 

  • Drummond, A.H. (1985) Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Nature (Lond.) 315, 752–5

    Article  Google Scholar 

  • Drummond, A.H., Bucher, F. and Levitan, I.B. (1980a) d-[3H]Lysergic acid diethylamide binding to serotonin receptors in the molluscan nervous system. J. Biol. Chem. 255, 6679–86

    Google Scholar 

  • Drummond, A.H., Bucher, F. and Levitan, I.B. (1980b) Distribution of serotonin and dopamine receptors in Aplysia tissues: analysis by [3H] LSD-binding and adenylate cyclase stimulation. Brain Res. 184, 163–77

    Article  Google Scholar 

  • Drummond, A.H., Bucher, F. and Levitan, I.B. (1980c) Serotonin-induced hyper- polarization of an identified Aplysia neuron is mediated by cyclic AMP. Proc. Natl Acad. Sci. USA 77, 5013–17

    Article  Google Scholar 

  • Drummond, G.I. (1985) Cyclic nucleotides in the nervous system. Raven Press, New York

    Google Scholar 

  • Dudai, Y. (1985) Analysis of receptors and binding sites in nervous tissue of insects. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 79–101. Springer Verlag, Berlin

    Chapter  Google Scholar 

  • Dudai, Y. and Zvi, S. (1984a) High-affinity [3H]octopamine-binding sites in Drosophila melanogaster: interaction with ligands and relationship to octo-pamine receptors. Comp. Biochem. Physiol 17c, 145–51

    Google Scholar 

  • Dudai, Y. and Zvi, S. (1984b) [3H]-serotonin binds to two classes of sites in Drosophila head homogenates. Comp. Biochem. Physiol. 77c, 305–9

    Google Scholar 

  • El-Fakahany, E. and Richelson, E. (1980) Regulation of uscarinic receptor- mediated cyclic GMP synthesis by cultured mouse neuroblastoma cells. J. Neuro-chem. 35, 941–8

    Google Scholar 

  • El-Mestikawy, S., Glowinski, J. and Haman, M. (1983) Tyrosine hydroxylase activation in depolarized dopaminergic terminals — involvement of Ca2+- dependent phosphorylation. Nature (Lond.) 302, 830–2

    Article  Google Scholar 

  • Elofsson, R., Laxmyr, L. Rosengren, E. and Hansson, C. (1982) Identification and quantitative measurements of biogenic amines and dopa in the CNS and haemolymph of the crayfish Pacifastocus leniusculus (Crustacea). Comp. Biochem. Physiol. 71c, 195–201

    Google Scholar 

  • Emson, P.C., Burrows, M. and Fonnum, F. (1974) Levels of glutamate decarboxylase, choline acetyltransferase and acetylcholinesterase in identified motorneurons of the locust. J. Neurobiol. 5, 33–42

    Article  Google Scholar 

  • Enna, S.J. (1981) GABA receptors. Trends Pharmacol. Sci. 2, 62–6 Evans, P.D. (1978) Octopamine: a high-affinity uptake mechanism in the nervous system of the cockroach. J. Neurochem. 30, 1015–22

    Google Scholar 

  • Evans, P.D. (1980) Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15, 317–473

    Google Scholar 

  • Evans, P.D. (1981) Multiple receptor types for octopamine in the locust J. Physiol. (Lond.) 318, pp. 99–122

    Google Scholar 

  • Evans, P.D. (1982) Properties of modulatory octopamine receptors in the locust. In: Neuropharmacology of insects. Ciba Foundation Symposium, Vol. 88, pp. 48- 62. Pitman, London

    Google Scholar 

  • Evans, P.D., Davenport, A.P., Elias, M.S., Morton, D.B. and Trimmer, B.A. (1985) Assays for biogenic amines in insect nervous tissue. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 25–46. Springer- Verlag, Berlin

    Chapter  Google Scholar 

  • Evans, P.D., Kravitz, E.A. and Talamo, B.R. (1976) Octopamine release at two points along lobster nerve trunks. J. Physiol. (Lond.) 262, 71–89

    Google Scholar 

  • Evans, P.D. and O’Shea, M. (1977) The identification of an octopaminergic neurone which modulates neuromuscular transmission in the locust. Nature (Lond.) 270, 257–9

    Article  Google Scholar 

  • Evans, P.D., Talamo, B.R. and Kravitz, E.A. (1975) Octopamine neurons: morphology, release of octopamine and possible physiological role. Brain Res. 90, 340–7

    Article  Google Scholar 

  • Evans, P.H. and Fox, P.M. (1975) Enzymatic N-acetylation of indolealkylamines by brain homogenates of the honey bee Apis mellifera. J. Insect Physiol. 21, 343–53

    Article  Google Scholar 

  • Evans, P.H., Soderlund, D.M. and Aldrich, J.R. (1980) In vitro N-acetylation of biogenic amines by tissues of the European corn borer, Ostrinia nubilalis (Hiiber). Insect Biochem. 10, 375–80

    Article  Google Scholar 

  • Falck, B. and Owman, C. (1965) A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic amines. Acta Univ. Lund. Sect. II No. 7, 1–23

    Google Scholar 

  • Fein, A., Payne, R., Carson, D.W., Berridge, M.J. and Irvine, R.F. (1984) Photoreceptor excitation and adaptation by inositol–1,4,5-trisphosphate. Nature (Lond.) 311, 157–60

    Article  Google Scholar 

  • Frazier, W.T., Kandel, E.R., Kupfermann, I., Waziri, R. and Coggeshall, R. (1967) Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30, 1288–1351

    Google Scholar 

  • Frontali, N. (1968) Histochemical localization of catecholamines in the brain of normal and drug-treated cockroaches. J. Insect. Physiol. 14, 881–6

    Article  Google Scholar 

  • Garcia, J.L., Haro, A. and Muncio, A.M. (1981) Regulation of adenylate cyclase from brain membranes of the insect Ceratitis capitata. Comp. Biochem. Physiol. 70B, 59–62

    Google Scholar 

  • Gilman, A.G. and Schrier, B.K. (1971) Effect of catecholamines on the adenosine- 3,5-cyclic-monophosphate concentrations of clonal satellite cells of neurons. Proc. Natl Acad. Sci. USA 68, 2165–8

    Article  Google Scholar 

  • Gnegy, M. and Treisman, G. (1981) Effect of calmodulin on dopamine-sensitive adenylate cyclase activity in rat striatal membranes. Molec. Pharmacol. 19, 256–63

    Google Scholar 

  • Goodhardt, M., Ferry, N., Geynet, P. and Hanoune, J. (1982) Hepatic at- adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy. J. Biol. Chem. 257, 11577–83

    Google Scholar 

  • Grab, D.J., Carlin, R.K. and Siekevitz, P. (1981) Function of calmodulin in post synaptic densities II. Presence of a calmodulin-activatable protein kinase activity. J. Cell Biol. 89, 440–8

    Article  Google Scholar 

  • Greengard, P. (1978a) Phosphorylated proteins as physiological effectors. Science 199, 146–52

    Article  Google Scholar 

  • Greengard, P. (1978b) Cyclic nucleotides, phosphorylated proteins and neuronal function. Raven Press, New York

    Google Scholar 

  • Haidamous, M., Kouyoumdjain, J.C., Briley, P.A. and Gonnard, P. (1980). In vivo effects of noradrenaline and noradrenergic receptor agonists and antagonists on rat cerebellar cyclic GMP levels. Eur. J. Pharmacol. 63, 287–94

    Article  Google Scholar 

  • Hamon, M., Bourgoin, S., Artaud, F. and Glowinski, J. (1979) The role of intraneural 5-HT and of tryptophan hydroxylase activation in the control of 5-HT synthesis in rat brain slices incubated in K+-enriched medium. J. Neurochem. 33, 1031–42

    Article  Google Scholar 

  • Harden, T.K. and McCarthy, K.D. (1982) Identification of the beta-andrenergic receptor subtype on astroglia purified from rat brain. J. Pharmacol. Exp. Ther. 22, 600–5

    Google Scholar 

  • Harmar, A.J. and Horn, A.S. (1977) Octopamine-sensitive adenylate cyclase in cockroach brain: effects of agonists, antagonists and guanyl nucleotides. Molec. Pharmacol. 13, 512–20

    Google Scholar 

  • Hayashi, S., Murdock, L.L. and Florey, E. (1977) Octopamine metabolism in invertebrates (Locusta, Astacus, Helix): evidence for N-acetylation in arthropod tissues. Comp. Biochem. Physiol 58c, 183–91

    Article  Google Scholar 

  • Heideman, W., Wierman, B.M. and Storm, D.R. (1982) GTP is not required for calmodulin stimulation of bovine brain adenylate cyclase. Proc. Natl Acad. Sci. USA 79, 1462–5

    Article  Google Scholar 

  • Hildebrand, J.G., Barker, D.L., Herbert, E. and Kravitz, E.A. (1971) Screening for neurotransmitters: a rapid radiochemical procedure J. Neurobiol. 2, 231–46

    Article  Google Scholar 

  • Hiripi, L. and S-Rosa, K.C. (1973) Fluorimetric determination of 5-hydroxy- tryptamine and catecholamines in the central nervous system and heart of Locusta migratoriodes. J. Insect Physiol 19, 1481–5

    Article  Google Scholar 

  • Hokfelt, T. (1966) The effect of reserpine on the intraneuronal vesicles of the rat vas deferens, Experientia 22, 56–7

    Article  Google Scholar 

  • Hollingworth, R.M. (1976) Chemistry, biological activity and uses of formamidine pesticides. Environ. Hlth Persp. 14, 57–69

    Article  Google Scholar 

  • Hornykiewicz, O. (1981) Importance of topographic neurochemistry studying neurotransmitter systems in human brain: critique and new data. In: Riederer, P. and Usdin, E. (eds) Transmitter biochemistry of human brain tissue, pp. 9–24. Macmillan, London

    Google Scholar 

  • Houk, E.J. and Beck, S.D. (1978) Monoamine oxidase in the brain of European corn borer larvae, Ostrinia nubilalis (Hüber). Insect Biochem. 8, 231–6

    Article  Google Scholar 

  • Hoyle, G. and Barker, D.L. (1975) Synthesis of octopamine by insect dorsalmedian unpaired neurons. J. Exp. Zool. 193, 433–9

    Article  Google Scholar 

  • Hoyle, G., Dagan, D., Moberly, B. and Colquhoun, W. (1974) Dorsal unpaired median insect neurons make neurosecretory endings on skeletal muscle. J. Exp. Zool 187, 159–65

    Article  Google Scholar 

  • Huttner, W.B. and Greengard, P. (1979) Multiple phosphorylation sites in protein 1 and their differential regulation by cAMP and calcium. Proc. Natl Acad. Sci. USA 76, 5402–6

    Article  Google Scholar 

  • Huttner, W.B., Schiebler, W., Greengard, P. and De Camilli, P. (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein: III. Its association with synaptic vesicles studied in a highly-purified vesicle preparation. J. Cell Biol. 96, 1374–88

    Article  Google Scholar 

  • Huttner, W.B., Schiebler, W., Greengard, P. and De Camilli, P. (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein: III. Its association with synaptic vesicles studied in a highly-purified vesicle preparation. J. Cell Biol. 96, 1374–88

    Google Scholar 

  • Hulme, E.C., Berrie, C.P., Birdsall, N.J. and Burgen, A.S.V. (1981) Interactions of muscarinic receptors with guanine nucleotides and adenylate cyclase. In: Birdsall, N.J.M. (ed.) Drug receptors and their effectors, pp. 23–34. Macmillan, London

    Google Scholar 

  • Iversen, L.L. (1985) Brain cells converse with each other through chemistry. And their vocabulary of neurotransmitters is turning out to be extraordinarily diverse. New Scientist 106, 11–14

    Google Scholar 

  • Kajikawa, N., Kaibuchi, K., Matsubara, T., Kikkawa, U., Takai, Y. and Nishizuka, Y. (1983) A possible role of protein kinase C in signal-induced lysosomal enzyme release. Biochem. Biophys. Res. Commun. 116, 743–50

    Article  Google Scholar 

  • Kandel, E.R. and Schwartz, J.H. (1982) Molecular biology of an elementary form of learning: modulation of transmitter release through cAMP-dependent protein kinase. Science 218, 433–43

    Article  Google Scholar 

  • Kant, G.J., Meyerhoff, J.L. and Lenox, R.H. (1980) In vivo effects of apomorphine and 4-(3-butoxy–4-methoxybenzyl)–2-imidazolidinone (RO 20–1724) on cyclic nucleotides in rat brain and pituitary. Biochem. Pharmacol 29, 369–73

    Article  Google Scholar 

  • Karnusina, I., Suzuki, R., Padgett, W. and Daly, W. (1983) Degeneration of CAI neurons in hippocampus after ischemia in Mongolian gerbils: cyclic AMP- systems. Brain Res. 268, 87–94

    Article  Google Scholar 

  • Kaufman, S. (1974) Properties of the pterin-dependent aromatic amino acid hydroxylases. In: Wolstenholme, G.E.W. and Fitzsimons, D.W. (eds) Aromatic amino acids in the brain, Ciba Foundation Symposium 22, pp. 85–108. Elsevier, Amsterdam

    Google Scholar 

  • Kelly, L.E. (1981) The regulation of protein phosphorylation in synaptosomal fractions from Drosophila heads: the role of cyclic adenosine monophosphate and calcium/calmodulin. Comp. Biochem. Physiol 68B, 61–7

    Article  Google Scholar 

  • Kelly, P.T., Cotman, C.W. and Largen, M. (1979) Cyclic AMP-stimulated protein kinases at brain synaptic junctions. J. Biol Chem. 254, 1564–75

    Google Scholar 

  • Kennedy, M.B. (1978) Products of biogenic amine metabolism in the lobster: sulphate conjugates. J. Neurochem. 30, 315–20

    Article  Google Scholar 

  • Kennedy, M.B. and Greengard, P. (1981) Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc. Natl Acad, Sci. USA 78, 1293–7

    Article  Google Scholar 

  • Kilpatriek, A.T. (1981) Monoamine-sensitive adenylate cyclase in the nervous system of the locust Schistocerca gregaria. Ph.D. Thesis, University of Glasgow

    Google Scholar 

  • Kilpatriek, A.T., Vaughan, P.F.T. and Donnellan, J.F. (1980) Monoamine sensitive adenylate cyclase in Schistocerca gregaria nervous tissue. In: Insect neurobiology and pesticide action, pp. 341–5. Proc. Soc. Chem. Ind., London

    Google Scholar 

  • Kilpatriek, A.T., Vaughan, P.F.T. and Donnellan, J.F. (1982) The effect of guanyl-nucleotides on the monoamine-sensitive adenylate cyclase of Schistocerca gregaria nervous tissue. Insect Biochem. 12, 393–7

    Article  Google Scholar 

  • Kingan, T.G. and Hildebrand, J.G. (1985) Screening and assays for neurotransmitters in the insect nervous system. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 79–101. Springer-Verlag, Berlin

    Google Scholar 

  • Klemm, N. (1976) Histochemistry of putative transmitter substances in the insect brain. Progr. Neurobiol. 7, 99–169

    Article  Google Scholar 

  • Klemm, N. and Schneider, L. (1975) Selective uptake of indolamine into nervous fibres in the brain of the desert locust Schistocerca gregaria Forskal (Insecta). A fluorescence and electron microscopic investigation. Comp. Biochem. Physiol 50c, 177–82

    Google Scholar 

  • Knight, D.E. and Baker, P.F. (1983) The phorbal ester TP A increases the affinity of exocytosis for calcium in ‘leaky’ adrenal medullary cells. FEBS Lett. 160, 98–100

    Article  Google Scholar 

  • Kojima, I., Lippes, H., Kojima, K. and Rasmussen, H. (1983) Aldosterone secretion: effect of phorbal ester and A23187. Biochem. Biophys. Res. Commun. 116, 555–62

    Article  Google Scholar 

  • Krebs, E.G, and Beavo, J. (1979) Phosphorylation-dephosphorylation of enzymes Ann. Rev. Biochem. 48, 923–59

    Article  Google Scholar 

  • Krueger, B.K., Forn, J. and Greengard, P. (1977) Depolarization induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J. Biol Chem. 252, 2764–73

    Google Scholar 

  • Kuo, J.F. and Greengard, P. (1970) Stimulation of adenosine-3,5- monophosphate-dependent and guanosine-3,5 -monophosphate-dependent protein kinases by some analogues of adenosine–3,5 -monophosphate. Biochem. Biophys. Res. Commun. 40, 1032–8

    Article  Google Scholar 

  • Kuo, J.F., Wyatt, G.R. and Greengard, P. (1971) Cyclic nucleotide-dependent protein kinases, ix. Partial purification and some properties of guanosine 3,5- monophosphate-dependent and adenosine 3,5-monophosphate-dependent protein kinases from various tissues and species of arthropoda. J. Biol Chem. 246, 7159–67

    Google Scholar 

  • Kupferman, I. (1980) Role of cyclic nucleotides in excitable cells. Ann. Rev. Physiol 42, 629–41

    Article  Google Scholar 

  • Lafon-Cazal, M. and Bockaert, J. (1984) Pharmacological characterization of dopamine-sensitive adenylate cyclase in the salivary glands of Locusta migratoria L. Insect Biochem. 14, 541–6

    Article  Google Scholar 

  • Laxmyr, L. (1984) Biogenic amines and dopa in the central nervous system of decapod crustaceans. Comp. Biochem. Physiol 77c, 139–43

    Article  Google Scholar 

  • Lazar, M.A., Lockfeld, A.J., Truscott, R.J.W. and Barchas, J.D. (1982) Tyrosine hydroxylase from bovine striatum: catalytic properties of the phosphorylated and non phosphorylated forms of the purified enzyme. J. Neurochem. 39, 409–22

    Article  Google Scholar 

  • Lemos, J.R., Novak-Hofer, I. and Levitan, I.B. (1982) Serotonin alters the phos-phorylation of specific proteins inside a single living nerve cell. Nature (Lond.) 298, 65–6

    Article  Google Scholar 

  • Lent, C.M. (1982) Serotonin-containing neurones within the segmental nervous system of the leech. In: Osborne, N.N. (ed.) Biology of serotonergic transmission, pp. 431–56. John Wiley, New York

    Google Scholar 

  • Levitan, I.B. and Barondes, S.H. (1974) Octopamine- and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglia of Aplysia californica. Proc. Natl Acad. Sci. USA 71, 1145–8

    Article  Google Scholar 

  • Levitan, I.B., Marsden, C.J. and Barondes, S.H. (1974) Cyclic AMP and amine effects on phosphorylation of specific protein in abdominal ganglion of Aplysia californica; localization and kinetic analysis. J. Neurobiol 5, 511–25

    Article  Google Scholar 

  • Lincoln, T.M. and Carlin, J.D. (1983) Characterization and biological role of the cGMP dependent protein kinase. In: Greengard, P. and Robison, G.A. (eds) Advances in cyclic nucleotides research, Vol. 15, pp. 139–92. Raven Press, New York

    Google Scholar 

  • Livingston, M.S. and Tempel, B.L. (1983) Genetic dissection of monoamine neuro-transmitter synthesis in Drosophila. Nature (Lond.) 303, 67–70

    Article  Google Scholar 

  • Lunt, G.G. (1985) Analysis of neurochemical data. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 296–316. Springer- Verlag, Berlin

    Chapter  Google Scholar 

  • Lykouras, E., Eccleston, D. and Marshall, E.F. (1980) The effect of a 5HT agonist on cyclic guanosine monophosphate in rat cerebellum. Biochem. Pharmacol. 29, 827–8

    Article  Google Scholar 

  • McNall, S.J. and Mansour, T.E. (1985) Forskolin activation of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem. Pharmacol. 34, 1683–8

    Article  Google Scholar 

  • Malkinson, A.M. (1975) Effect of calcium on cyclic AMP-dependent and cyclic GMP-dependent endogenous protein phosphorylation in mouse brain cytosol. Biochem. Biophys. Res. Commun. 67, 752–9

    Google Scholar 

  • Mancini, G. and Frontali, N. (1970) On the ultrastructural localization of catecholamines in the beta lobes (corpora pedunculata) of Periplaneta americana. Z. Zellforsch. mikrosk. Anat. 103, 341–50

    Article  Google Scholar 

  • Maranda, B. and Hodgetts, R. (1977) A characterization of dopamine acetyltransferase in Drosophila melanogaster. Insect Biochem. 7, 33–43

    Article  Google Scholar 

  • Maxwell, D.J. (1978) Fine structure of axons associated with the salivary apparatus of the cockroach, Nauphoeta cinerea. Tissue and Cell 10, 699–706

    Article  Google Scholar 

  • Maxwell, G.D., Tait, J.F. and Hildebrand, J.G. (1978) Regional synthesis of neurotransmitter candidates in the CNS of the moth, Manduca sexta. Comp. Biochem. Physiol. 61c, 109–19

    Article  Google Scholar 

  • Mir, A.K. and Vaughan, P.F.T. (1981a) Biosynthesis of N-acetyldopamine and N-acetyloctopamine by Schistocerca gregaria nervous tissue. J. Neurochem. 36, 441–6

    Article  Google Scholar 

  • Mir, A.K. and Vaughan, P.F.T. (1981b) The conversion of N-acetyltyramine to N-acetyldopamine by Schistocerca gregaria thoracic ganglia. Insect Biochem. 11, 571–7

    Article  Google Scholar 

  • Molinoff, P.B. and Axelrod, J. (1972) Distribution and turnover of octopamine in tissues. J. Neurochem. 19, 157–63

    Article  Google Scholar 

  • Morton, D.B. (1984) Pharmacology of the octopamine-stimulated adenylate cyclase of the locust and tick CNS. Comp. Biochem. Physiol, 78c, 153–8

    Article  Google Scholar 

  • Murdock, L.L. (1971) Catecholamines in arthropods: a review. Comp. Gen. Pharmacol. 2, 254–74

    Article  Google Scholar 

  • Murdock, L.L. and Hollingworth, R.M. (1980) Octopamine-like actions of formamidines in firefly light organs. In: Insect neurobiology and pesticide action, pp. 341–5. Proc. Soc. Chem. Ind., London

    Google Scholar 

  • Murdock, L.L. and Omar, D. (1981) N-acetyldopamine in insect nervous tissue. Insect Biochem. 11, 161–6

    Article  Google Scholar 

  • Murdock, L.L., Wirtz, R.A. and Kohler, G. (1973) 3,4-dihydroxyphenylalanine (DOPA) decarboxylase activity in the arthropod nervous system. Biochem. J. 132, 681–8

    Google Scholar 

  • Nassel, D.R. and Laxmyr, L. (1983) Quantitative determination of biogenic amines and DOPA in the CNS of adult and larval blow flies, Calliphora erythrocephala. Comp. Biochem. Physiol 75c, 259–65

    Article  Google Scholar 

  • Nathanson, J.A. (1977) Cyclic nucleotides and nervous system function. Physiol. Rev. 57, 157–256

    Google Scholar 

  • Nathanson, J.A. and Greengard, P. (1973) Octopamine-sensitive adenylate cyclase: evidence for a biological role of octopamine in nervous tissue. Science 180, 308–10

    Article  Google Scholar 

  • Nathanson, J.A. and Greengard, P. (1974) Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of action of lysergic acid diethylamide. Proc. Natl Acad. Sci USA 71, 797–801

    Article  Google Scholar 

  • Nelson, D.L. and Molinoff, P.B. (1976) Distribution and properties of adrenergic storage vesicles in nerve terminals. J. Pharmacol. Exp. Ther. 196, 346–59

    Google Scholar 

  • Nestler, E.J. and Greengard, P. (1982a) Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion. J. Neurosci. 2, 1011–23

    Google Scholar 

  • Nestler, E.J. and Greengard, P. (1982) Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature (Lond.) 296, 452–4

    Article  Google Scholar 

  • Nestler, E.J. and Greengard, P. (1983) Protein phosphorylation in the brain. Nature (Lond). 305, 583–8

    Article  Google Scholar 

  • Nishizuka, Y. (1983) Calcium, phospholipid turnover and transmembrane signalling. Phil. Trans. R. Soc. B 302, 101–12

    Article  Google Scholar 

  • Nishizuka, Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature (Lond.) 308, 693–8

    Article  Google Scholar 

  • Novak-Hofer, I. and Levitan, I.B. (1983) Ca2+/calmodulin regulated protein phosphorylation in the Aplysia nervous system. J. Neurosci. 3, 473–81

    Google Scholar 

  • Oertel, D., Linberg, K.A. and Case, J.F. (1975) Ultrastructure of the larval firefly light organ as related to control of light emission. Cell Tiss. Res. 164, 27–44

    Article  Google Scholar 

  • Omar, D., Murdock, L.L. and Hollingworth, R.M. (1982) Actions of pharmacological agents on 5-hydroxytryptamine and dopamine in the cockroach nervous system Periplaneta americana L. Comp. Biochem. Physiol. 73c, 423–9

    Article  Google Scholar 

  • Osborne, N.N. (1972) The in vivo synthesis of serotonin in an identified serotonin-containing neuron of Helix pomatia. Int. J. Neurosci. 3, 215–19

    Article  Google Scholar 

  • Osborne, N.N. (1973) Tryptophan metabolism in characterised neurons of Helix. Br. J. Pharmacol. 48, 546–9

    Google Scholar 

  • Osborne, N.N. (1977) Adenosine–35-monophosphate in snail (Helix pomatia) nervous system: analysis of dopamine receptors. Experientia 33, 917–19

    Article  Google Scholar 

  • Osborne, N.N., Hiripi, L. and Neuhoff, V. (1975a) The in vitro uptake of biologic amines by snail (Helix pomatia) nervous tissue. Biochem. Pharmacol. 24, 2141–8

    Article  Google Scholar 

  • Osborne, N.N. and Neuhoff, V. (1974) Formation of serotonin in insect (Periplaneta americana) nervous tissue. Brain Res. 74, 366–9

    Article  Google Scholar 

  • Osborne, N.N., Priggemeier, E. and Neuhoff, V. (1975b) Dopamine metabolism in characterised neurones of Planorbis corneus. Brain Res. 90, 261–71

    Article  Google Scholar 

  • Pau, R.N. and Kelly, C. (1975) The hydroxylation of tyrosine by an enzyme from the third-instar larvae of the blowfly Calliphora erythrocephala. Biochem. J. 147, 565–73

    Google Scholar 

  • Pellmar, T.C. (1981) Transmitter-induced calcium current. Fed. Proc. 40, 2631–6

    Google Scholar 

  • Pellmar, T.C. and Carpenter, D.O. (1980) Serotonin induces a voltage-sensitive calcium current in neurons of Aplysia californica. J. Neurophysiol 44, 423–39

    Google Scholar 

  • Peroutka, S.J. and Snyder, S.H. (1979) Multiple serotonin receptors; differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Molec. Pharmacol 16, 687–99

    Google Scholar 

  • Pollock, R.J., Kapatos, G. and Kaufman, S. (1981) Effect of cyclic AMP-dependent protein phosphorylating conditions on the pH-dependent activity of tyrosine hydroxylase from beef and rat striata. J. Neurochem. 37, 855–60

    Article  Google Scholar 

  • Powell, B. and Cottrell, G.A. (1974) Dopamine in an identified neuron of Planorbis corneus. J. Neurochem. 22, 605–6

    Article  Google Scholar 

  • Ram, J.L. and Ehrlich, Y.H. (1978) Cyclic GMP-stimulated phosphorylation of membrane-bound proteins from nerve roots of Aplysia californica. J. Neurochem. 30, 487–91

    Article  Google Scholar 

  • Robertson, H.A. (1974) The innervation of the salivary gland of the moth Manduca sexta. Cell Tiss. Res. 148, 237–45

    Article  Google Scholar 

  • Robertson, H.A. (1976) Octopamine, dopamine and noradrenaline content of the brain of the locust, Schistocerca gregaria. Experientia 32, 552–4

    Article  Google Scholar 

  • Robertson, H.A. and Juorio, A.V. (1976) Octopamine and some related non-catecholic amines in invertebrate nervous systems. Int. Rev. Neurobiol. 19, 173- 224.

    Google Scholar 

  • Robertson, H.A. and Osborne, N.N. (1979) Putative neurotransmitters in the annelid (Lumbricus terrestris) central nervous system: presence of 5-hydroxy- tryptamine and octopamine-stimulated adenylate cyclases. Comp. Biochem. Physiol 64c, 7–14

    Google Scholar 

  • Robinson, N.L., Cox, P.M. and Greengard, P. (1982) Glutamate regulates adenylate and guanylate cyclase activities in an isolated membrane preparation from insect muscle. Nature (Lond.) 296, 354–6

    Article  Google Scholar 

  • Ross, E.M. and Gilman, A.G. (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Ann. Rev. Biochem. 49, 533–64

    Article  Google Scholar 

  • Rotondo, D. (1984) The effect of octopamine, cyclic adenosine 3,5- monophosphate and calcium on protein phosphorylation in Schistocerca gregaria central nervous system. Ph.D Thesis, University of Glasgow

    Google Scholar 

  • Rotondo, D., Vaughan, P.F.T. and Donnellan J.F. (1987a) Octopamine and cyclic AMP stimulate protein phosphorylation in the CNS of Schistocerca gregaria. Insect Biochem. 17, 283–90

    Article  Google Scholar 

  • Rotondo, D., Vaughan, P.F.T. and Donnellan, J.F. (1987b) A study of cyclic AMP- dependent protein phosphorylation in Schistocerca gregaria CNS: a comparison to that in mammalian CNS. Comp. Biochem. Physiol in press

    Google Scholar 

  • Routtenberg, A., Morgan, D., Conway, R.G., Schmidt, M.S. and Ghetti, B. (1981) Human brain protein phosphorylation in vitro cyclic AMP stimulation of electro-phoretically separated substrates. Brain Res. 222, 323–33

    Article  Google Scholar 

  • Rutschke, E. and Thomas, H. (1975) Histochemical and ultrastructural investigations on occurrence of catecholamines in the deutocerebrum of the cockroach, Periplaneta americana L. Zool Jb. Anat. 94, 474–98

    Google Scholar 

  • Saavedra, J.M., Brownstein, M.J., Carpenter, D.O. and Axelrod, J. (1974) Octopamine: presence in single neurons of Aplysia suggests neurotransmitter function. Science 185, 364–5

    Article  Google Scholar 

  • Sailer, C.G. and Salaman, A.I. (1984) Dopamine synthesis in synaptosomes: relation of autoreceptor functioning to pH, membrane depolarisation and intra- synaptosomal dopamine content. J. Neurochem. 43, 675–88

    Article  Google Scholar 

  • Salter, R.S., Krinks, M.H., Klee, C.B. and Neer, E.J. (1981) Calmodulin activates the isolated catalytic unit of brain adenylate cyclase. J. Biol. Chem. 256, 9830–3

    Google Scholar 

  • Sano, K., Takai, Y., Yamanishi, J. and Nishizuka, Y. (1983) A role of calcium- activated phospholipid dependent protein kinase in human platelet activation. J. Biol. Chem. 258, 2010–13

    Google Scholar 

  • Schoeffeniels, E. and Dandrifosse, G. (1980) Protein phosphorylation and sodium conductance in nerve membrane. Proc. Natl Acad. Sci USA 77, 812–16

    Article  Google Scholar 

  • Seaman, K. and Daly, J.W. (1982) Calmodulin stimulation of adenylate cyclase in rat brain membranes does not require GTP. Life Sciences 30, 1457–64

    Article  Google Scholar 

  • Sekeris, C.E. and Karlson, P. (1966) Biosynthesis of catecholamines in insects. Pharmacol. Rev. 18, 89–94

    Google Scholar 

  • Sieghart, W., Forn, J. and Greengard, P. (1979) Ca2+ and AMP regulate phosphorylation of some two membrane-associated proteins specific to nerve tissue. Proc. Natl Acad. Sci. USA 76, 2475–9

    Article  Google Scholar 

  • Singh, S.J.P., Orchard, I. and Loughton, B.G. (1981) Octopamine actions of formamidines on hormone release in the locust Locusta migratoria. Pest. Biochem. Physiol. 16, 249–55

    Article  Google Scholar 

  • Sloley, B.D. and Owen, M.D. (1982) The effects of reserpine on amine concentrations in the nervous system of the cockroach (Periplaneta americana). Insect Biochem. 12, 469–16

    Article  Google Scholar 

  • Stadel, J.M., DeLean, A. and Lefkowitz, R.J. (1982) Molecular mechanisms of coupling in hormone receptor-adenylate cyclase systems. Adv. Enzymol. 53, 1–43

    Google Scholar 

  • Stefano, G.B. and Aiello, E. (1975) Histofluorescent localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia). Biol. Bull. 148, 141–56

    Article  Google Scholar 

  • Stuart, A.E., Hudspeth, A.J. and Hall, Z.W. (1974) Vital staining of specific monoamine-containing cells in the leech nervous system. Cell Tiss. Res. 153, 55- 61

    Google Scholar 

  • Taylor, D.P., Dyer, K.A, and Newburgh, R.W. (1978) Cyclic nucleotides in neuronal and glial-enriched fractions from the nerve cord of Manduca sexta. J. Insect. Physiol. 22, 1303–4

    Article  Google Scholar 

  • Thomas, A.P., Alexander, J. and Williamson, J.R. (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J. Biol. Chem. 259, 5574–84

    Google Scholar 

  • Treistman, S.W. and Levitan, I.B. (1986) Alteration of electrical activity in mollus- can neurones by cyclic nucleotides and peptide factors. Nature (Lond.) 261, 62–4

    Article  Google Scholar 

  • Ueda, T. and Greengard, P. (1977) Adenosine 3’,5,-monophosphate-regulated phosphorylation system of neuronal membranes. 1. Solubilization, purification and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155–63

    Google Scholar 

  • Ueda, T., Maeno, H. and Greengard, P. (1973) Regulation of endogenous phospho-rylation of specific proteins in synaptic membrane fractions in rat brain by adenosine 3,5-monophosphate. J. Biol. Chem. 248, 8295–305

    Google Scholar 

  • Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl. 367, 1–48

    Google Scholar 

  • Uzzan, A. and Dudai, Y. (1982) Aminergic receptors in Drosophila melanogaster. responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem, 38, 1542–50

    Article  Google Scholar 

  • Vandenberg, C.A. and Montal, M. (1984) Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes. Biochemistry 23, 2347–52

    Article  Google Scholar 

  • Vaughan, P.F.T. and Neuhoff, V. (1976) The metabolism of tyrosine, tyramine and 3,4-dihydroxyphenylalanine by thoracic and cerebral ganglia of the locust (Schistocerca gregaria). Brain Res, 117, 175–80

    Article  Google Scholar 

  • Walaas, S.I., Aswad, D.W. and Greengard, P. (1983c) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature (Lond.) 301, 69–71

    Article  Google Scholar 

  • Walaas, S.I. and Greengard, P. (1984) DARPP–32, a dopamine- and adenosine 3,5-monophosphate-regulated phosphoprotein enriched in dopamine- innervated brain regions. 1. Regional and cellular distribution in the rat brain. J. Neurosci. 4, 84–98

    Google Scholar 

  • Walaas, S.I., Nairn, A.C. and Greengard, P. (1983a) Regional distribution of calcium- and cyclic adenosine–3,,5’-monophosphate-regulated protein phosphorylation systems in mammalian brain I. Particulate systems. J. Neurosci. 3, 291–301

    Google Scholar 

  • Walaas, S.I., Nairn, A.C. and Greengard, P. (1983b) Regional distribution of calcium- and cyclic adenosine–3,5-monophosphate-regulated protein phosphorylation systems in mammalian brain II. Soluble systems. J. Neurosci. 3, 302- 11

    Google Scholar 

  • Wallace, B.G. (1976) The biosynthesis of octopamine-characterization of lobster tyramine (3-hydroxylase. J. Neurochem. 26, 761–70

    Article  Google Scholar 

  • Walter, U. and Greengard, P. (1981) Cyclic AMP-dependent and cyclic GMP- dependent protein kinases of nervous tissue. Curr. Top. Cell Reg. 19, 219–56

    Google Scholar 

  • Walter, U., Kanof, P., Schulman, H. and Greengard, P. (1978) Adenosine 3,5- monophosphate receptor proteins in mammalian brain. J. Biol. Chem. 253, 6275–80

    Google Scholar 

  • Walter, U., Miller, P., Wilson, F., Menkes, D. and Greengard, P. (1980) Immunological distinction between guanosine 3,5-monophosphate-dependent and adenosine 3,5-monophosphate-dependent protein kinases. J. Biol. Chem. 255, 3757–62

    Google Scholar 

  • Weinreich, D., McCaman, M.W., McCaman, R.E. and Vaughn, J.E. (1973) Chemical, enzymatic and ultrastructural characterization of 5-hydroxytrypta- mine containing neurones from the ganglia of Aplysia californica and Tritonia diomedia. J. Neurochem. 20, 969–76

    Article  Google Scholar 

  • Welsh, J.H. (1972) Catecholamines in the invertebrates. In: Blaschko, H. and Muscholl, E. (eds) Catecholamines, Vol. 33 Handb. Exp. Pharmakol. pp. 79- 109. Springer-Verlag, Berlin

    Google Scholar 

  • Whitehead, D.L. (1969) New evidence for the control mechanism of sclerotization in insects. Nature (Lond.) 224, 721–3

    Article  Google Scholar 

  • Wood, J.G., Wallace, R., Whittaker, J. and Cheung, W.Y. (1980) Immunocyto- chemical localization of calmodulin in regions of rodent brain. Ann. NY Acad. Sci. 356, 75–82

    Article  Google Scholar 

  • Wu, C.F., Berneking, J.M. and Barker, D.L. (1983) Acetylcholine synthesis and accumulation in the CNS of Drosophila larvae: analysis of shibirets a mutant with a temperature-sensitive block in synaptic transmission. J. Neurochem. 40, 1386- 96

    Google Scholar 

  • Zawalich, W., Brown, C. and Rasmussen, H. (1983) Insulin secretion: combined effects of phorbol esters and A23187. Biochem. Biophys. Res. Commun. 117, 448–55

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 G.G. Lunt and R.W. Olsen

About this chapter

Cite this chapter

Vaughan, P.F.T. (1988). Amine Transmitters and their Associated Second Messenger Systems. In: Lunt, G.G., Olsen, R.W. (eds) Comparative Invertebrate Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9804-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9804-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9806-0

  • Online ISBN: 978-1-4615-9804-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics