Skip to main content

The Turnover of Acetylcholine

  • Chapter
Central Neurotransmitter Turnover

Abstract

Acetylcholine is an important transmitter in the central nervous system, though since there are technical difficulties in locating the cholinergic pathways, less is known about these than, for example, those involving noradrenaline (Butcher, 1978; McGeer & McGeer, 1979). However, newer methods for the location of cholinergic receptors, particularly the muscarinic receptors which predominate in the brain, has led to more information (Kuhar et al., 1980). Clearly the cholinergic activity of a given pathway is related to the amount of acetylcholine released at the terminals and if the store of acetylcholine is to remain constant, then that which is released must be resynthesised; this represents the turnover or process of renewal (more specifically in a given compartment). The turnover rate (TRACh) is the quantity of acetylcholine turned over, i.e. synthesized and catabolized in a given time. Indirectly, cholinergic activity can be related to levels of acetylcholine and also to the capacity of a given tissue to synthesize the transmitter. Synthetic capacity, however, will not necessarily be related to use and turnover. Marchbanks (1977) has calculated that the capacity for synthesis at the neuromuscular junction exceeds turnover by a factor of 50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansell, G.B. & Spanner, S.(1974) The inhibition of brain choline kinase by hemicholinium-3. J.Neurochem.22,1153–1155.

    Article  Google Scholar 

  • Ansell, G.B. & Spanner, S. (1975) The origin and metabolism of brain choline. In: Cholinergic Mechanisms (Waser, P.G. ed.), Raven Press, New York, pp.117–129.

    Google Scholar 

  • Ansell, G.B. & Spanner, S. (1979) Sources of choline for acetylcholine synthesis in the brain. In: Nutrition and the Brain, Vol. 5 (Barbeau, A., Growdon, J.H. & Wurtman, R.J. eds.), Raven Press, New York, pp.35–46.

    Google Scholar 

  • Aquilonius, S.-M. & Eckernäs, S.-A. (1976) Cortical and striatal in vivo uptake and metabolism of plasma choline in the rat: effects of haloperidol and apomorphine. Acta Pharmacol. Toxicol. (Kbh), 39, 129–140.

    Article  Google Scholar 

  • Aquilonius, S.-M., Flengte, F., Schuberth, J., Sparf, B. & Sundwall, A. (1973) Synthesis of acetylcholine in different compartments of brain nerve terminals in vivo as studied by the incorporation of choline from plasma and the effect of pentobarbital on this process. J. Neurochem. 20, 1509–1521.

    Article  Google Scholar 

  • Bartolini, A. & Pepeu, G.C. (1967) Investigations into the acetylcholine output from the cerebral cortex of the cat in the presence of hyoscine. Br. J. Pharmacol. Chemotherap. 31, 66–73.

    Google Scholar 

  • Beani, L., Bianchi, C., Santinoceto, L. & Marchetti, P. (1968) The cerebral acetylcholine release in conscious rabbits with semi-permanently implanted epidural cups. Int. J. Neuropharmacol. 7, 469–481.

    Article  Google Scholar 

  • Belesin, D. & Polak, R.L. (1965) Depression by morphine and chloralose of acetylcholine release from the cat’s brain.J.Physiol.(Lond.) 177,411–419.

    Google Scholar 

  • Birks, R. & Macintosh, F.S. (1961) Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem. Physiol.39, 787–827.

    Article  Google Scholar 

  • Bradley, P.B., Briggs, I., Gayton, R.J. & Lambert, L.A. (1976) Effects of microiontophoretically applied methionine-enkephalin on single neurones in rat brain stem. Nature (Lond.) 261, 425–426.

    Article  Google Scholar 

  • Butcher, L.L. (1978) Recent advances in histochemical techniques for the study of central cholinergic mechanisms. In: Cholinergic Mechanisms and Psychopharmacology (Jenden, D.J. ed.), Plenum Press, New York, pp.93–124.

    Google Scholar 

  • Campbell, L.B. & Jenden, D.J. (1970) Gas chromatographic evaluation of the influence of oxotremorine upon the regional distribution of acetylcholine in rat brain. J. Neurochem. 17, 1697–1699.

    Article  Google Scholar 

  • Chakrin, L.W. & Whittaker, V.P. (1969) The subcellular distribution of (N-Me3H)acetylcholine synthesised by brain in vivo. Biochem. J. 113, 97–107.

    Google Scholar 

  • Cheney, D.L., Racagni, G., Zsilla, G. & Costa, E. (1976) Differences in the action of various drugs on striatal acetylcholine and choline content in rats killed by decapitation or microwave radiation. J. Pharm. Pharmacol. 28, 75–77.

    Article  Google Scholar 

  • Cheney, D.L., Trabucchi, M., Racagni, G., Wang, C. & Costa, E. (1974) Effects of acute and chronic morphine on regional rat brain acetylcholine turnover rate. Life Sci. 15, 1977–1990.

    Article  Google Scholar 

  • Choi, R.L., Freeman, J.J. & Jenden, D.J. (1975) Kinetics of plasma choline in relation to turnover of brain choline and formation of acetylcholine. J. Neurochem. 24, 735–741.

    Google Scholar 

  • Costa, E., Cheney, D.L., Racagni, G. & Zsilla, G. (1975) An analysis at synaptic level of the morphine action in striatum and N. accumbens: dopamine and acetylcholine interaction. Life Sci. 17, 1–8.

    Article  Google Scholar 

  • Cox, B. & Potkonjak, D. (1969) The relationship between tremor and change in brain acetylcholine concentrations produced by tremorine or oxotremorine in the rat. Br. J. Pharmacol. 35, 295–303.

    Google Scholar 

  • Davies, J. & Dray, A. (1976) Effects of enkephalin and morphine on Renshaw cells in feline spinal cord. Nature (Lond.) 262, 603–604.

    Article  Google Scholar 

  • De Robertis, E., De Iraldi, A.P., Rodriguez, G. & Gomez, C.J. (1961) On the isolation of nerve endings and synaptic vesicles. J. Biophys. Biochem. Cytol. 9, 229–235.

    Article  Google Scholar 

  • Domino, E.F. & Wilson, A.E. (1972) Psychotropic drug influence on brain acetylcholine utilization. Psychopharmacologia 25, 291–298.

    Article  Google Scholar 

  • Dross, K. & Kewitz, H. (1972) Concentration and origin of choline in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 274, 91–106.

    Article  Google Scholar 

  • Eckernäs, S.-A. (1977) Plasma choline and cholinergic mechanisms in the brain. Methods, function and role in Huntington’s Chorea. Acta Physiol. Scand. Suppl. 449, 8–62.

    Google Scholar 

  • Ewetz, L., Spart, B. & Sörbo, B. (1969) Enzymatic determination of choline in brain with choline Phosphokinase and 32p- labelled ATP. Symposium on in vitro Procedures with Radioisotopes in Clinical Medicine and Research (International Atomic Energy Agency, ed.), pp.175–183.

    Google Scholar 

  • Feigenson, M.E. & Saelens, J.K. (1969) An enzyme assay for acetylcholine. Biochem. Pharmacol.18,1479–1486.

    Google Scholar 

  • Fox, J.M., Betzing, H. & LeKim, D. (1979) Pharmacokinetics of orally ingested phosphatidylcholine. In: Nutrition and the Brain, Vol. 5 (Barbeau, A., Growdon, J.H. & Wurtman, R.J. eds.), Raven Press, New York, pp.95–108.

    Google Scholar 

  • Freeman, J.J. & Jenden, D.J. (1976) The source of choline for acetylcholine synthesis in brain. Life Sci. 19, 949–962.

    Article  Google Scholar 

  • Gardiner, J.E. (1961) The inhibition of acetylcholine synthesis in brain by a hemicholinium. Biochem. J. 81, 297–303.

    Google Scholar 

  • Gibson, G.E., Blass, J.P. & Jenden, D.J. (1978) Measurement of acetylcholine turnover with glucose used as precursor: evidence for compartmentation of glucose metabolism in brain. J. Neurochem. 30, 71–76.

    Article  Google Scholar 

  • Goldberg, A.M. & McCaman, R.E. (1973) The determination of picomole amounts of acetylcholine in mammalian brain. J. Neurochem. 20, 1–8.

    Article  Google Scholar 

  • Gray, E.G. & Whittaker, V.P. (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenisation and centrifugation. J. Anat. (Lond.) 96, 79–88.

    Google Scholar 

  • Green, J.P. & Szilagyi, P.I.A. (1974) Measurement of acetylcholine by pyrolysis gas chromatography. In: Choline and Acetylcholine: Handbook of Clinical Assay Methods (Hanin, I., ed.), Raven Press, New York, pp.151–162.

    Google Scholar 

  • Haga, T. & Noda, H. (1973) Choline uptake systems of rat brain synaptosomes. Biochim. Biophys. Acta 291, 564–575.

    Article  Google Scholar 

  • Hamar, C.-G., Hanin, I., Holmstedt, B., Kitz, R.J., Jenden, D. J. & Karlen, B. (1968) Identification of acetylcholine in fresh rat brain by combined gas chromatography-mass spectrometry. Nature (Lond.) 220, 915–917.

    Article  Google Scholar 

  • Hanin, I. (ed.) (1974) Choline and Acetylcholine: Handbook of Chemical Assay Methods. Raven Press, New York.

    Google Scholar 

  • Hanin, I. & Skinner, R.F. (1975) Analysis of microquantities of choline and its esters utilizing gas chromatography-chemical ionization mass spectrometry. Anal. Biochem. 66, 568–583.

    Article  Google Scholar 

  • Hebb, C.O. & Whittaker, V.P. (1958) Intracellular distribution of acetylcholine and choline acetylase. J. Physiol. (Lond.) 142, 187–196.

    Google Scholar 

  • Heuser, J.E. (1978) Quick-freezing evidence in favour of the vesicular hypothesis. Trends Neurosci. 1, 80–82.

    Google Scholar 

  • Holmstedt, B., Lundgren, G. & Sundwall, A. (1963) Tremorine and atropine effects on brain acetylcholine. Life Sci. 10, 731–736.

    Article  Google Scholar 

  • Jenden, D.J. (1977) Estimation of acetylcholine and the dynamics of its metabolism. In: Cholinergic Mechanisms and Psychopharmacology (Jenden, D.J. ed.), Plenum Press, New York, pp.139–162.

    Google Scholar 

  • Jenden, D.J., Booth, R.A. & Roch, M. (1972) Simultaneous micro-estimation of choline and acetylcholine by gas chromatography. Analyt.Chem.44,1879–1881.

    Article  Google Scholar 

  • Jenden, D.J., Choi, L., Silverman, R.W., Steinborn, J.A., Roch, M. & Booth, R.A. (1974) Acetylcholine turnover estimation in brain by gas chromatography/mass spectrometry. Life Sci. 14, 55–63.

    Article  Google Scholar 

  • Jenden, D.J. & Hanin, I. (1974) Gas chromatographic microestimation of choline and acetylcholine after N-demethylation by sodium benzenethiolate. In: Choline and Acetylcholine: Handbook of Chemical Assay Methods (Hanin, I. ed.), Raven Press, New York, pp.135–150.

    Google Scholar 

  • Jenden, D.J., Hanin, I. & Lamb, S.I. (1968) Gas chromatographic microestimation of acetylcholine and related compounds. Anal. Chem. 40, 125–128.

    Article  Google Scholar 

  • Karlén, B., Lundgren, G., Lundin, J. & Holmstedt, B. (1977) Effects of oxotremorine in synthesis of acetylcholine in striatum and whole brain of mice killed by various techniques. Life Sci. 20, 1651–1656.

    Article  Google Scholar 

  • Kewitz, H., Dross, K. & Pleul, O. (1973) Choline and its metabolic successors in brain. In: Central Nervous System -Studies on Metabolic Regulation and Function (Genazzini, E. Sc Harkin, H. eds.), Springer Verlag, Berlin, pp.21–32.

    Google Scholar 

  • Kuhar, M.J., Warmsley, J.K., Lewis, M.S. & Birdsall, N. (1980) Cholinergic muscarinic receptors in brain: autoradiographic studies. In: Cholinergic Mechanisms, Plenum Press, New York, in press.

    Google Scholar 

  • Krnjević, K. & Mitchell, J.F. (1961) The release of acetylcholine in the isolated rat diaphragm. J. Physiol. (Lond.) 155, 246–262.

    Google Scholar 

  • Ladinsky, H. & Consolo, S. (1974) Determination of acetylcholine and choline by enzymatic radioassay. In: Choline and Acetylcholine: Handbook of Chemical Assay Methods (Hanin, I. ed.), Raven Press, New York, pp.1–17.

    Google Scholar 

  • McCaman, R.E. & Stetzler, J. (1977) Radiochemical assay for acetylcholine: modifications for sub-picromole measurements. J. Neurochem. 28, 669–671.

    Article  Google Scholar 

  • McGeer, P.L. & McGeer, E.G. (1979) Central cholinergic pathways. In: Nutrition and the Brain, Vol. 5 (Barbeau, A., Growdon, J.H. & Wurtman, R.J. eds.), Raven Press, New York, pp.177–199.

    Google Scholar 

  • Marchbanks, R.M. (1975) Biochemistry of cholinergic neurons. In: Handbook of Psychopharmacology, Vol. 3 (Iversen, L., Iversen, S.D. & Snyder, S.H. eds.), Plenum Press, New. York, pp.247–326.

    Google Scholar 

  • Marchbanks, R.M. (1977) Turnover and release of acetylcholine. In: Synapses (Cottrell, G.A. & Usherwood, P.R., eds.), Blackie, Glasgow, pp.81–101.

    Google Scholar 

  • Marchbanks, R.M. (1978) The vesicular hypothesis questioned. Trends NeuroSci. 1, 83–84.

    Google Scholar 

  • Massarelli, R., Durkin, T., Niedergang, G. & Mandel, P. (1976) A simple radioactive determination of choline and acetylcholine concentrations. Pharmacol. Res. Comm. 8, 407–416.

    Article  Google Scholar 

  • Mitchell, J.F. (1960) The release of acetylcholine from the cerebral cortex and the cerebellum. J. Physiol. (Lond.) 155, 22–23P.

    Google Scholar 

  • Mitchell, J.F. (1963) The spontaneous and evoked release of acetylcholine from cerebral cortex. J.Physiol.(Lond.) 165, 98–116.

    Google Scholar 

  • Mitchell, J.F. (1966) Acetylcholine release from the brain. In: Mechanisms of Release of Biogenic Amines, Wenner-Gren Center International Symposium Series, Vol. 5 (von Euler, U. S., Rosill, S. & Uvnäs, B. eds.), Pergamon Press, New York and London, pp.425–437.

    Google Scholar 

  • Modak, A.T., Weintraub, S.T., McCoy, T.H. & Stavinoha, W.B. (1976) Use of 300 m-sec microwave irradiation for enzyme inactivation: a study of effects of sodium pentobarbital on acetylcholine concentration in mouse brain regions. J. Pharmacol, exp. Therap. 197, 245–252.

    Google Scholar 

  • Moroni, F., Cheney, D.L. & Costa, E. (1978) The turnover rate of acetylcholine in brain nuclei of rats injected intraventricularly and intraseptally with alpha and beta-endorphine. Neuropharmacology 17, 191–196.

    Article  Google Scholar 

  • Neff, N.H., Spano, P.F., Groppetti, A., Wang, C.T. & Costa, E. (1971) A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain. J. Pharmacol. exp. Therap. 176, 701–710.

    Google Scholar 

  • Nordberg, A. (1977) Apparent regional turnover of acetylcholine in mouse brain. Methodological and functional aspects. Acta Physiol. Scand. Suppl. 445, 1–51.

    Google Scholar 

  • Nordberg, A. (1978) Effect of oxotremorine on the apparent regional turnover of acetylcholine in mouse brain. J. Neurochem. 30, 383–389.

    Article  Google Scholar 

  • Nordberg, A. & Sundwall, A. (1976) Effect of oxotremorine on endogenous acetylcholine and on uptake and biotransformation of radioactive choline in discrete regions of mouse brain in vivo. Biochem. Pharmacol. 25, 135–140.

    Article  Google Scholar 

  • Nordberg, A. & Sundwall, A. (1977) Effect of sodium pentobarbital on the apparent turnover of acetylcholine in different brain regions. Acta Physiol. Scand. 99, 336–344.

    Article  Google Scholar 

  • Pepeu, G. (1973) The release of acetylcholine from the brain: an approach to the study of the central cholinergic mechanisms. Prog. Neurobiol. 2, 257–288.

    Article  Google Scholar 

  • Quastel, J.H. (1978) Source of the acetyl group in acetylcholine. In: Cholinergic Mechanisms and Psychopharmacology (Jenden, D.J. ed), Plenum Press, New York, pp.411–430.

    Google Scholar 

  • Quastel, J.H., Tennenbaum, M. & Wheatley, A.H.M., (1936) Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem. J. 30, 1668–1681.

    Google Scholar 

  • Racagni, G., Cheney, D.L., Trabucchi, M., Wang, C. & Costa, E. (1974) Measurement of acetylcholine turnover rate in discrete areas of rat brain. Life Sci. 15, 1961–1975.

    Article  Google Scholar 

  • Racagni, G., Cheney, D.L., Zsilla, G. & Costa, E. (1976) The measurement of acetylcholine turnover rate in brain structures. Neuropharmacology 15, 723–726.

    Article  Google Scholar 

  • Richter, D. & Crossland, J. (1949) Variation in the acetylcholine content of the brain with physiological state. Am. J. Physiol. 159, 247–255.

    Google Scholar 

  • Reid, W.R., Haubrich, D.R. & Krishna, G. (1971) Enzymatic radioassay for acetylcholine and choline in brain. Anal. Biochem.42,390–397.

    Article  Google Scholar 

  • Riley, R.F. (1944) Metabolism of phosphorylcholine II Partition of phosphorylcholine phosphorus between blood phosphate fractions. III Partition of phosphorylcholine between tissues. IV Distribution of phosphorylcholine phosphorus in tissue lipids. J. Biol. Chem. 153, 535–549.

    Google Scholar 

  • Saelens, J.K., Allen, M.P. and Simke, J.P. (1970) Determination of acetylcholine and choline by an enzymatic assay. Arch. Int. Pharmacodyn. 186, 279–286.

    Google Scholar 

  • Schmidt, D.E. & Buxbaum, D.M. (1978) Effect of acute morphine administration on regional acetylcholine turnover in the rat. Brain Res. 147, 194–200.

    Article  Google Scholar 

  • Schuberth, J., Sparf, B. & Sundwall, A. (1969) A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem. 16, 693–700.

    Article  Google Scholar 

  • Schuberth, J., Sparf, B. & Sundwall, A. (1970) On the turnover of acetylcholine in nerve endings of mouse brain in vivo. J. Neurochem. 17, 461–468.

    Article  Google Scholar 

  • Schueler, F.W. (1960) The mechanism of action of the hemicholiniums. Int. Rev. Neurobiol. 2, 77–97.

    Article  Google Scholar 

  • Sethy, V.H. & Van Woert, M.H. (1973) Antimuscarinic drugs - effects on brain acetylcholine and tremors in rats. Biochem. Pharmacol. 22, 2685–2691.

    Article  Google Scholar 

  • Simon, J.R., Atweh, S. & Kuhar, M.J. (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J. Neurochem. 26, 909–922.

    Article  Google Scholar 

  • Simon, J.R., Mittag, J.W. & Kuhar, M.J. (1975) Inhibition of synaptosomal uptake of choline by various choline analogs. Biochem. Pharmacol. 24, 1139–1142.

    Article  Google Scholar 

  • Spanner, S., Hall, R.C. & Ansell, G.B. (1976) Arterio-venous differences of choline and choline lipids across the brain of rat and rabbit. Biochem. J. 154, 133–140.

    Google Scholar 

  • Sparf, B. (1973) On the turnover of acetylcholine in the brain. An experimental study using intravenously injected radio-active choline. Acta Physiol. Scand. Suppl. 397, 7–47.

    Google Scholar 

  • Stavinoha, W.B., Modak, A.T. & Weintraub, S.T. (1976) Rate of accumulation of acetylcholine in discrete regions of the rat brain after dichlorvos treatment. J. Neurochem. 27, 1375–1378.

    Article  Google Scholar 

  • Stavinoha, W.B. & Weintraub, S.T. (1974a) Choline content of rat brain. Science 183, 964–965.

    Article  Google Scholar 

  • Stavinoha, W.B. & Weintraub, S.T. (1974b) Estimation of choline and acetylcholine in tissue by pyrolysis gas chromatography. Anal. Chem. 46, 757–760.

    Article  Google Scholar 

  • Stavinoha, W.B., Weintraub, S.T. & Modak, A.T. (1973) The use of microwave heating to inactivate Cholinesterase in the rat brain prior to analysis for acetylcholine. J. Neurochem. 20, 361–371.

    Article  Google Scholar 

  • Stavinoha, W.B., Weintraub, S.T. & Modak, A.T. (1974) Regional concentrations of choline and acetylcholine in the rat brain. J. Neurochem. 23, 885–886.

    Article  Google Scholar 

  • Szilagyi, P.I.A., Green, J.P., Brown, O.M. & Margolis, S. (1972) The measurement of nanogram amounts of acetylcholine in tissues by pyrolysis gas chromatography. J.Neurochem.19, 2555–2566.

    Article  Google Scholar 

  • Takahashi, R. & Aprison, M.H. (1964) Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. Neurochem. 11, 887–898.

    Article  Google Scholar 

  • Toru, M. & Aprison, M.H. (1966) Brain acetylcholine studies: a new extraction procedure. J. Neurochem. 13, 1533–1544.

    Article  Google Scholar 

  • Trabucchi, M., Cheney, D.L., Hanin, I. & Costa, E. (1975) Application of principles of steady-state kinetics to the estimation of brain acetylcholine turnover rate: Effects of oxotremorine and physostigmine. J. Pharmacol, exp. Ther. 194, 57–64.

    Google Scholar 

  • Vocci, F.J. Jr., Karbowski, M.J. & Dewey, W.L. (1979) Apparent in vivo acetylcholine turnover rate in whole mouse brain: evidence for a two compartment model by two independent kinetic analyses. J. Neurochem. 32, 1417–1422.

    Article  Google Scholar 

  • Whittaker, V.P. (1965) The application of sub-cellular fractionation techniques to the study of brain function. Prog. Biophys. Mol. Biol. I5, 39–96.

    Article  Google Scholar 

  • Whittaker, V.P., Michaelson, I.A. & Kirkland, R.J.A. (1964) The separation of synaptic vesicles from nerve ending particles (“synaptosomes”). Biochem. J. 90, 293–303.

    Google Scholar 

  • Yamamura, H.I. & Snyder, S.H. (1973) High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21, 1355–1374.

    Article  Google Scholar 

  • Zilversmit, D.B. (1960) The design and analysis of isotope experiments. Am. J. Med. 29, 832–848.

    Article  Google Scholar 

  • Zsilla, G., Racagni, G., Cheney, D.L. & Costa, E. (1977) Constant rate infusion of deuterated phosphoryl choline to measure the effects of morphine on acetylcholine turnover rate in specific nuclei of rat brain. Neuropharmacology 16, 25–31.

    Article  Google Scholar 

Download references

Authors

Editor information

C. J. Pycock P. V. Taberner

Rights and permissions

Reprints and permissions

Copyright information

© 1981 C.J. Pycock and P.V. Taberner

About this chapter

Cite this chapter

Ansell, G.B. (1981). The Turnover of Acetylcholine. In: Pycock, C.J., Taberner, P.V. (eds) Central Neurotransmitter Turnover. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9778-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9778-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9780-3

  • Online ISBN: 978-1-4615-9778-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics