Skip to main content

Turnover of Neurotransmitters in the Brain: An Introduction

  • Chapter
Central Neurotransmitter Turnover

Abstract

In order to function, all living organisms take up exogenous substances for use in the various metabolic processes required to maintain their integrity. Metabolites are interconverted and eventually degraded to yield products which can be excreted. The total quantity of a metabolite in a cell is often referred to as the metabolic pool of that substance and the amount that is transported or metabolised, the turnover (Zilversmit et al., 1943). Often the term turnover rate is used instead of turnover although both expressions have the same dimensions of mass. time -1. In some cases (e.g. glutamic acid in nervous tissue), it has been recognised that the metabolic pool is not homogeneous and that different turnover rates apply to different proportions of the metabolite. Under these circumstances the metabolite is said to exist in different pools or compartments. A compartment is defined as a quantity of metabolite having uniform and distinguishable kinetics of transformation or transport. The term (fractional) rate constant (with the dimension of time-1 is also used in estimates of turnover (Robertson, 1957; Atkins, 1969) and refers to the ratio of the turnover of a compartment to the size of that compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adèr, J.P. & Korf, J. (1979) Free 3-methoxy-4-hydroxyphenylethylene glycol in the central nervous system of the rat: semi-automated fluorometric assay, turnover and effects of drugs. J. Neurochem. 32,1761–1768.

    Article  Google Scholar 

  • Andén, N.-E., Bédard, P., Fuxe, K. & Ungerstedt, U. (1972)Early and selective increase in brain dopamine levels after axotomy. Experientia 28, 300–302.

    Article  Google Scholar 

  • Atkins, G.L. (1969) Multicompartment Models for Biological Systems.Methuen & Co., London, pp.7–18.

    Google Scholar 

  • Berger, P.A. (1977) Neurotransmitters and affective disorders. In: Neurotransmitter Function: Basic and Clinical Aspects, (Fields, W. ed.) Stratton Intercontinental, New York, pp.305–336.

    Google Scholar 

  • Bertilsson, L., Mao, C.C. & Costa, E. (1977) Application of principles of steady-state kinetics to the estimation of γ-aminobutyric acid turnover rate in nuclei of rat brain. J. Pharmac. exp. Ther. 200, 277–284.

    Google Scholar 

  • Braestrup, C. & Nielsen, C. (1976) Regulation in the central norepinephrine neurotransmission in vivo by alpha-adreno-ceptor active drugs. J. Pharmac. exp. Ther. 198, 596–608.

    Google Scholar 

  • Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T. & Atack, C. V. (1972) Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev. 24, 371–384.

    Google Scholar 

  • Costa, E. (1970) Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo. In: Biochemistry of Simple Neuronal Models (Costa, E. & Giacobini, E., eds), Raven Press, New York, Adv. Biochem. Psychopharm. 2, pp. 169–204.

    Google Scholar 

  • Costa, E., Carenzi, A., Cheney, D., Guidotti, A., Racagni, G. & Zivkovic, B. (1975) Compartmentation of striatal dopamine: problems in assessing the dynamics of functional and storage pools of transmitters. In: Metabolic Compartmentation and Neurotransmission (Berl, S., Clarke, D.D. & Schneider, D. eds), Plenum Press, New York, pp.167–187.

    Chapter  Google Scholar 

  • Dedek, J., Baumes, R., Tien-Duc, N., Gomeni, R. & Korf, J.(1979) Turnover of free and conjugated (sulphonyloxy) dihydroxyphenylacetic acid and homovanillic acid in rat striatum. J. Neurochem. 33, 687–695.

    Article  Google Scholar 

  • DiGiulio, A.M., Groppetti, A., Cattabeni, F., Galli, C.L., Maggi, A., Algeri, A. & Ponzio, F. (1978) Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons. Eur. J. Pharmacol. 52, 201–207.

    Article  Google Scholar 

  • Doteuchi, M., Wang, C. & Costa, E. (1974) Compartmentation of dopamine in the rat striatum. Molec. Pharmacol. 10, 225–234.

    Google Scholar 

  • Extein, I., Korf, J., Roth, R.M. & Bowers, M.B. Jr. (1973) Accumulation of 3-methoxy-4-hydroxy-phenyl glycol sulfate in rabbit cerebrospinal fluid following probenecid. Brain Res. 54, 403–407.

    Google Scholar 

  • Glowinski, J. (1975) Regulation of synthesis and release processes in central catecholaminergic neurons. In: Metabolic Compartmentation and Neurotransmission (Berl, S., Clarke, D. D. & Schneider, D. eds), Plenum Press, New York, pp.187–203.

    Google Scholar 

  • Groppetti, A., Algeri, S., Cattabeni, F., DiGuilio, A.M., Galli, C., Ponzio, F. & Spano, P.F. (1977) Changes in specific activity of dopamine metabolites as evidence of a multiple compartmentation of dopamine in striatal neurons. J. Neurochem. 28, 193–197.

    Article  Google Scholar 

  • Hamon, M. & Glowinski, J. (1974) Regulation of 5-HT synthesis Life Sci.15,1533–1548.

    Article  Google Scholar 

  • Haubrich, D.R., Wang, P.F.L., Herman, R.L. & Clody, D.E. (1975) Acetylcholine synthesis in rat brain: dissimilar effects of clozapine and chlorpromazine. Life Sci. 17, 739–748.

    Article  Google Scholar 

  • Herr, B. & Roth, R.H. (1976) The effect of acute raphe lesion on serotonin synthesis and metabolism in the rat forebrain and hippocampus. Brain Res. 110, 189–193.

    Article  Google Scholar 

  • Javoy, F. & Glowinski, J. (1971) Dynamic characteristics of the “functional” compartment of dopaminergic terminals of the rat striatum. J. Neurochem. 18, 1305–1311.

    Article  Google Scholar 

  • Javoy, F., Youdim, M.B.M., Agid, Y. & Glowinski, J. (1973) Early effect of monoamine oxidase inhibitors on dopamine metabolism and monoamine oxidase activity in the neostriatum in the rat. J. Neural Transm. 34, 279–289.

    Article  Google Scholar 

  • Karoum, F., Neff, N.H. & Wyatt, R.J. (1976) Distribution and turnover rate of vanillylmandelic acid and 3-methoxy-4-hydroxyphenylglycol in the rat brain. J. Neurochem. 27, 33–35.

    Article  Google Scholar 

  • Kehr, W. (1976) 3-Methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vivo. Naunyn -Schmiedeberg’s Arch. Pharmacol. 293, 209–215.

    Article  Google Scholar 

  • Kopin, I.J., Breese, G.R., Krauss, K.R. & Weisse, V.K. (1968) Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation. J. Pharmac. exp. Ther. 161, 271–278.

    Google Scholar 

  • Korf, J., Roth, R.H. & Aghajanian, G.K. (1973) Alterations in turnover and endogenous levels of norepinephrine in cerebral cortex following electrical stimulation and acute axotomy of cerebral noradrenergic pathways. Eur. J. Pharmacol. 23, 276–282.

    Article  Google Scholar 

  • Korf, J., Grasdijk, L. & Westerink, B.H.C. (1976) Effects of electrical stimulation of the nigrostriatal pathway of the rat on dopamine metabolism. J. Neurochem. 26, 579–584.

    Article  Google Scholar 

  • Korf, J. & Postema, F. (1980) Bilateral dopamine metabolism in the striatum after unilateral application of tetrodotoxin in the midbrain of the rat. Brain Res. 187, 251–255.

    Article  Google Scholar 

  • Le Roy Blank, C, Sasa, S., Isernhagen, R., Meyerson, L.R., Wassil, D., Wong, P., Modak, A.T. & Stavinoha, W.B. (1979) Levels of norepinephrine and dopamine in mouse brain regions following microwave inactivation - rapid post mortem degradation of striatal dopamine in decapitated animals. J. Neurochem. 33, 213–219.

    Article  Google Scholar 

  • Meek, J.L. & Neff, N.H. (1973) The rate of formation of 3-methoxy-4-hydroxyphenylethylene glycol sulphate in brain as an estimate of the rate of formation of norepinephrine. J. Pharmac. exp. Ther. 184, 570–575.

    Google Scholar 

  • Moleman, P. & Bruinvels, J. (1976) Differential effect of morphine on dopaminergic neurons in frontal cortex and striatum of the rat. Life Sci. 19, 1277–1282.

    Article  Google Scholar 

  • Morot-Gaudry, Y., Hamon, M., Bourgoin, S., Ley, J.P. & Glowinski, J. (1974) Estimation of the rate of 5HT-synthesis in the mouse brain by various methods. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, 223–238.

    Article  Google Scholar 

  • Van Wijk, M. & Korf, J. (1980) Post mortem changes of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the mouse brain. In preparation.

    Google Scholar 

  • Walters, J.R. & Roth, R.K. (1974) Dopaminergic neurons: drug induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Phamac. exp. Ther. 191, 82–91.

    Google Scholar 

  • Werdinius, B. (1967) Effect of probenecid on the levels of monoamine metabolites in the rat brain. Acta Pharmacol. Kbh) 25, 18–23.

    Article  Google Scholar 

  • Westerink, B.H.C. & Korf, J. (1976) Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. Eur. J. Pharmacol. 37, 249–255.

    Article  Google Scholar 

  • Wiesel, F.A. & Sedvall, G. (1974) Post mortem changes of dopamine and homovanillic acid levels in rat striatum as measured by mass fragmentography. Brain Res. 65, 547–550.

    Article  Google Scholar 

  • Zilversmit, D.B., Entenman, C. & Fishier, M.C. (1943) On the calculation of turnover time and turnover rate from experiments involving the use of labelling agents. J. gen. Physiol. 26, 325–340.

    Article  Google Scholar 

Download references

Authors

Editor information

C. J. Pycock P. V. Taberner

Rights and permissions

Reprints and permissions

Copyright information

© 1981 C.J. Pycock and P.V. Taberner

About this chapter

Cite this chapter

Korf, J. (1981). Turnover of Neurotransmitters in the Brain: An Introduction. In: Pycock, C.J., Taberner, P.V. (eds) Central Neurotransmitter Turnover. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9778-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9778-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9780-3

  • Online ISBN: 978-1-4615-9778-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics