Skip to main content

Part of the book series: Croom Helm Applied Biology Series ((CHBMS))

  • 26 Accesses

Abstract

The presence of elongated tubular structures in cilia and flagella was recognised during the early days of electron microscopy (Fawcett and Porter, 1954). But although the term ‘microtubule’ was introduced by Slautterback (1963) as a result of the examination of cells fixed in osmium tetroxide, it was the introduction of glutaraldehyde as a fixative, together with improvements in embedding and staining techniques, which led to a proper appreciation of the widespread occurrence of microtubules, apart from those in cilia, flagella, basal bodies and centrioles, as a feature of the cytoplasm of virtually all types of eukaryotic cell. It has also become clear that microtubules are more stable in some situations than in others; those in cilia and flagella are the most stable, while those found in the mitotic spindle and more generally throughout the cytoplasm are much more easily disrupted by, for example, low temperatures, high hydrostatic pressures, high Ca2+ concentrations, and by the so-called ‘spindle poisons’. It is the general cytoplasmic variety of microtubule with which we are chiefly concerned, but we shall also take account of information derived from work on microtubules found elsewhere in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. Allen and G.G. Borisy (1974) ‘Structural Polarity and Directional Growth of Microtubules of Chlamydomonas Flagella’, J. Molec. Biol., vol. 90, p. 381

    Article  Google Scholar 

  • L.A. Amos (1979) ‘Structure of Microtubules’, in K. Roberts and J.S. Hyams (eds.). Microtubules (Academic Press, London), pp. 1–64

    Google Scholar 

  • G.G. Borisy, J.B. Olmsted and J.B. Klugman (1972) ‘In Vitro Aggregation of Cytoplasmic Microtubule Subunits’, Proc. Nat. Acad. Sci., vol. 69, p. 2890

    Article  Google Scholar 

  • B.R. Brinkley,G.M. Fuller and D.P. Highfield (1975) ‘Cytoplasmic Microtubules in Normal and Transformed Cells in Culture. Analysis by Tubulin Antibody Immunofluorescence’, Proc. Nat. Acad. Sci., vol. 72, p. 4981

    Article  Google Scholar 

  • —, S.M. Cox, D.A. Pepper, D.A. Wible, S.L. Brenner and R.L. Pardue (1981) ‘Tubulin Assembly Sites and the Organisation of Cytoplasmic Microtubules in Cultured Mammalian Cells’, J. Cell Biol., vol. 90, p. 554

    Google Scholar 

  • J. Bryan and L. Wilson (1971) ‘Are Cytoplasmic Microtubules Heteropolymers?’, Proc. Nat. Acad. Sci., vol. 68, p. 1762

    Article  Google Scholar 

  • J.C. Bulinski and G.G. Borisy (1979) ‘Self Assembly of Microtubules in Extracts of Cultured HeLa Cells and the Identification of HeLa Microtubule-Associated Proteins’, Proc. Nat. Acad. Sci., vol. 76, p. 293

    Article  Google Scholar 

  • — and G.G. Borisy (1980a) ‘Immunofluorescence Localisation of HeLa Cell Microtubule-Associated Proteins on Microtubules In Vitro and in Vivo’, J. Cell Biol., vol. 87, p. 792

    Google Scholar 

  • — and G.G. Borisy (1980b) ‘Widespread Distribution of a 210,000 Molecular Weight Microtubule-Associated Protein in Cells and Tissues of Primates’, J. Cell Biol., vol. 87, p. 802

    Google Scholar 

  • L.C. Davidse and W. Flach (1977) ‘Differential Binding of Methyl benzimidazol-2-yl-carbamate to Fungal Tubulin as a Mechanism of Resistance to this Antimitotic Agent in Mutant Strains of Aspergillus nidulans’, J. Cell Biol., vol. 72, p. 174

    Article  Google Scholar 

  • P. Dustin (1978) Microtubules (Springer-Verlag, Berlin), p. 452

    Book  Google Scholar 

  • U. Euteneuer and J.R. Mcintosh (1980) ‘Polarity of Midbody and Phragmoplas Microtubules’, J. Cell Biol., vol. 87, p. 509

    Article  Google Scholar 

  • D.W. Fawcett and K.R. Porter (1954) ‘A Study of the Fine Structure of Ciliated Epithelia’, J. Morphol., vol. 94, p. 221

    Article  Google Scholar 

  • C. Fulton and P.A. Simpson (1979) ‘Tubulin Pools, Synthesis and Utilization’, in K. Roberts and J.S. Hyams (eds.). Microtubules (Academic Press, London), pp. 117–74

    Google Scholar 

  • E.F. Hartung (1954) ‘History of the Use of Colchicine and Related Medicaments in Gout, with Suggestions for Further Research’, Ann. Rheum. Dis., vol. 13, p. 190

    Article  Google Scholar 

  • S.R. Heidemann and J.R. Mcintosh (1980) ‘Visualisation of the Structural Polarity of Microtubules’, Nature, vol 286, p. 517

    Article  Google Scholar 

  • W. Herzog and K. Weber (1977) ‘In Vitro Assembly of Pure Tubulin into Microtubules in the Absence of Associated Proteins and Glycerol’, Proc. Nat. Acad. Sci., vol 74, p. 1860

    Article  Google Scholar 

  • S. Inoué and H. Sato (1967) ‘Cell Motility by Labile Association of Molecules. The Nature of Mitotic Spindle Fibres and their Role in Chromosome Movement’, J. Gen. Physiol, vol 50 (Suppl. The Contractile Process), p. 259

    Article  Google Scholar 

  • E. Krauhs, M. Little, T. Kempf, R. Hofer-Warbinek, W. Ade and H. Ponstingl (1981) ‘Complete Amino Acid Sequence of β-Tubulin from Porcine Brain’, Proc. Nat. Acad, Sci., vol 78, p. 4156

    Article  Google Scholar 

  • R.J. Ludford (1936) ‘The Action of Toxic Substances Upon the Division of Normal and Malignant Cells In Vitro’, Arch. Exp. Zellforsch., vol 18, p. 411

    Google Scholar 

  • R.F. Ludueña (1979) ‘Biochemistry of Tubulin’, in K. Roberts and J.S. Hyams (eds.). Microtubules (Academic Press, London), pp. 65–116

    Google Scholar 

  • — and D.O. Woodward (1973) ‘Isolation and Partial Characterization of α and β Tubulin from Outer Doublets of Sea Urchin Sperm and Microtubules of Chick Embryo Brain’, Proc. Nat. Acad. Sci., vol 70, p. 3594

    Google Scholar 

  • —, E.M. Shooter and L. Wilson (1977) ‘Structure of the Tubulin Dimer’, J. Biol Chem., vol 252, p. 7006

    Google Scholar 

  • R.L. Margolis and L. Wilson (1981) ‘Microtubule Treadmills — Possible Molecular Machinery’, Nature, vol. 293, p. 705

    Article  Google Scholar 

  • J.L. Morgan and N.W. Seeds (1975) ‘Tubulin Constancy During Morphological Differentiation of Mouse Neuroblastoma Cells’, J. Cell Biol., vol. 67, p. 136

    Article  Google Scholar 

  • D.B. Murphy, K.A. Johnson and G.G. Borisy (1977) ‘Role of Tubulin-Associated Proteins in Microtubule Nucleation and Elongation’, J. Molec. Biol., vol. 117, p. 33

    Article  Google Scholar 

  • M. Osborn and K. Weber (1976) ‘Cytoplasmic Microtubules in Tissue Culture Cells Appear to Grow From an Organising Structure Towards the Plasma Membrane’, Proc. Nat. Acad. Sci., vol. 73, p. 867

    Article  Google Scholar 

  • —, R.E. Webster and K. Weber (1978) ‘Individual Microtubules Viewed by Immunofluorescence and Electron Microscopy in the Same PtK2 Cell’, J. Cell Biol., vol. 77, p. R27

    Google Scholar 

  • D. Patterson and CA. Waldren (1973) ‘The Effect of Inhibitors of RNA and Protein Synthesis on Dibutyryl Cyclic AMP Mediated Morphological Transformations of Chinese Hamster Ovary Cells In VitroBiophys. Biochem. Res. Comm., vol. 50, p. 566

    Article  Google Scholar 

  • J. Piatigorsky (1975) ‘Lens Cell Elongation In Vitro and Microtubules’, N.Y. Acad. Sci., vol 253, p. 333

    Article  Google Scholar 

  • J.D. Pickett-Heaps (1969) ‘The Evolution of the Mitotic Apparatus: An Attempt at Comparative Cytology in Dividing Plant Cells’, Cytobios., vol. 1, p. 257

    Google Scholar 

  • H. Ponstingl, E. Krauhs, M. Little and T. Kempf (1981) ‘Complete Amino Acid Sequence of α-Tubulin from Porcine Brain’, Proc. Nat. Acad. Sci., vol. 78, p. 2757

    Article  Google Scholar 

  • K.R. Porter (1966) ‘Cytoplasmic Microtubules and Their Functions’, in G.E.W. Wolstenholme and M. O’Connor (eds.). Principles of Biomolecular Organisation (Ciba Foundation Symposium, J. and A. Churchill, London), pp. 308–45

    Google Scholar 

  • E.C Raff (1979) ‘The Control of Microtubule Assembly In Vitro’, Int. Rev. Cytol., vol. 59, p. 1

    Article  Google Scholar 

  • R.B. Scheele and G.G. Borisy (1979) ‘In Vitro Assembly of Microtubules’, in K. Roberts and J.S. Hyams (eds.). Microtubules (Academic Press, London), pp. 175–254

    Google Scholar 

  • G.A. Sharp, M. Osborn and K. Weber (1981) ‘Ultrastructure of Multiple Microtubule Initiation Sites in Mouse Neuroblastoma Cells’, J Cell Sci., vol. 47, p. 1

    Google Scholar 

  • D.B. Slautterback (1963) ‘Cytoplasmic Microtubules: I. Hydra’, J. Cell Biol., vol. 18, p. 367

    Article  Google Scholar 

  • R.D. Sloboda, W.L. Dentier, R.A. Bloodgood, B.R. Telzer, S. Granett and J.L. Rosenbaum (1976) ‘Microtubule-Associated Proteins (MAPs) and the Assembly of Microtubules’, in R. Goldman, T. Pollard and J.L. Rosenbaum (eds.), Cell Motility Book C (Cold Spring Harbor), pp. 1171–1212

    Google Scholar 

  • B.M. Spiegelman, M.A. Lopata and M.W. Kirschner (1979) ‘Aggregation of Microtubule Initiation Sites Preceding Neurite Outgrowth in Mouse Neuroblastoma Cells’, Cell, vol. 16, p. 253

    Article  Google Scholar 

  • P. Valenzuela, M. Quiroga, J. Zaldivar, W.J. Rutter, M.W. Kirschner and D.W. Cleveland (1981) ‘Nucleotide and Corresponding Amino Acid Sequences Encoded by α and β Tubulin mRNAs’, Nature, vol. 289, p. 650

    Article  Google Scholar 

  • K. Weber and M. Osborn (1979) ‘Intracellular Display of Microtubule Structures Revealed by Indirect Immunofluorescence Microscopy’, in K. Roberts and J.S. Hyams (eds.), Microtubules (Academic Press, London), pp. 279–313

    Google Scholar 

  • M.D. Weingarten, A.H. Lockwood, S.-Y. Hwo and M.W. Kirschner (1975) ‘A Protein Factor Essential for Microtubule Assembly’, Proc. Nat. Acad. Sci., vol. 72, p. 1858

    Article  Google Scholar 

  • R.C. Weisenberg (1972) ‘Microtubule Formation In Vitro in Solutions Containing Low Calcium Concentrations’, Science, vol. 177, p. 1104

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 C.A. Middleton and J.A. Sharp

About this chapter

Cite this chapter

Middleton, C.A., Sharp, J.A. (1984). Microtubules. In: Cell Locomotion in Vitro . Croom Helm Applied Biology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9772-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9772-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9774-2

  • Online ISBN: 978-1-4615-9772-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics