Skip to main content

Rational Generating Functions

  • Chapter
  • 677 Accesses

Part of the book series: The Wadsworth & Brooks/Cole Mathematics Series ((WBCMS,volume 1))

Abstract

The theory of binomial posets developed in the previous chapter sheds considerable light on the “meaning” of generating functions and reduces certain types of enumerative problems to a routine computation. However, it does not seem worthwhile to attack more complicated problems from this point of view. The remainder of this book will for the most part be concerned with other techniques for obtaining and analyzing generating functions. We first consider the simplest general class of generating functions, namely, the rational generating functions. In this section we will concern ourselves with rational generating functions in one variable; that is, generating functions of the form \( F(x) = \sum\nolimits_{n \geqslant 0} {f(n)x^n } \) that are rational functions in the ring \( C[[x]] \). This means that there exist polynomials\( P(x),Q(x) \in {\text{C}}[x] \) such that \( F(x) = P(x)Q(x)^{ - 1} \) in \( C[[x]] \). Here it is assumed that \( Q(0) \ne 0 \), so that \( Q(x)^{ - 1} \) exists in \( C[[x]] \).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Anand, V. C. Dumir, and H. Gupta, A combinatorial distribution problem, Duke Math. J. 33 (1966), 757–770.

    Article  Google Scholar 

  2. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London/New York, 1982.

    Google Scholar 

  3. G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucamán Rev. Ser. (A) 5 (1946), 147–150.

    Google Scholar 

  4. L. Garlitz, Enumeration of symmetric arrays, Duke Math. J. 33 (1966), 771–782.

    Article  Google Scholar 

  5. P. M. Cohn, Algebra and language theory. Bull. London Math. Soc. 7 (1975), 1–29.

    Article  Google Scholar 

  6. D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.

    Google Scholar 

  7. E. Ehrhart, Sur un problème de géométrie diophantienne linéaire I, II, J. Reine Angew. Math. 226 (1967). 1–29, and 227 (1967), 25–49. Correction, 231 (1968), 220.

    Google Scholar 

  8. Sur les carrés magiques, C. R. Acad. Sci. Paris 227 A (1973), 575–577.

    Google Scholar 

  9. Polynômes arithmétiques et Méthode des Polyèdres en Combinatoire, International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, Basel/Stuttgart, 1977.

    Google Scholar 

  10. M. Fliess, Sur divers produits de säries formelles, Bull. Soc. Math. France 102 (1974), 181–191.

    Google Scholar 

  11. D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236–240.

    Article  Google Scholar 

  12. — “Distributions Eulériennes et Mahoniennes sur le groupe des permutations,” in Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht/Boston, 1977.

    Google Scholar 

  13. D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nach. 83 (1978), 143–159.

    Article  Google Scholar 

  14. J. Hadamard, Théorème sur les séries entières. Acta Math. 22 (1899), 55–63.

    Article  Google Scholar 

  15. A. Hurwitz, Sur un thé or è me de M. Hadamard, C. R. Acad. Sci. Paris 128 (1899), 350–353.

    Google Scholar 

  16. D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput. 4 (1975), 474–477.

    Article  Google Scholar 

  17. C. Jordan, Calculus of Finite Differences, 3rd ed., Chelsea, New York, 1965.

    Google Scholar 

  18. D. A. Klarner, A combinatorial formula involving the Fredholm integral equation, J. Combinatorial Theory 5 (1968), 59–74.

    Article  Google Scholar 

  19. D. E. Knuth, A note on solid partitions. Math. Comp. 24 (1970), 955–962.

    Article  Google Scholar 

  20. M. R. Lagrange, Quelques résultats dans la métrique des permutations, Ann. scient. Éc. Norm. Sup. 79 (1962), 199–241.

    Google Scholar 

  21. M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.

    Google Scholar 

  22. I. G. Macdonald, The volume of a lattice polyhedron, Proc. Camb. Phil. Soc. 59 (1963), 719–726.

    Article  Google Scholar 

  23. Polynomials associated with finite cell complexes, J. London Math. Soc. (2) 4 (1971), 181–192.

    Google Scholar 

  24. P. McMullen, Lattice invariant valuations on rational polytopes. Arch. Math. (Basel) 31 (1978/79), 509–516.

    Article  Google Scholar 

  25. N. Metropolis, M. L. Stein, and P. R. Stein, Permanents of cyclic (0, 1) matrices, J. Combinatorial Theory 7 (1969), 291–321.

    Article  Google Scholar 

  26. N. E. Nörlund, Vorlesungen uber Differenzenrechnung, Springer-Verlag, Berlin, 1924.

    Book  Google Scholar 

  27. J. K. Percus, Combinatorial Methods, Springer-Verlag, Berlin/Heidelberg/New York, 1971.

    Book  Google Scholar 

  28. G. Pólya, On the number of certain lattice polygons, J. Combinatorial Theory 6 (1969), 102–105.

    Article  Google Scholar 

  29. T. Popoviciu, Asupra unei probleme de partitie a numerelor, Acad. R. P. R., Filiala Cluj, Studie şi cercetari ştiintifice, 1–2, anul. IV (1953), 7–58.

    Google Scholar 

  30. J. Riordan, Generating functions for powers of Fibonacci numbers, Duke Math. J. 29 (1962), 5–12.

    Article  Google Scholar 

  31. L. W. Shapiro, A combinatorial proof of a Chebyshev polynomial identity. Discrete Math. 34 (1981), 203–206.

    Article  Google Scholar 

  32. J. H. Spencer, Counting magic squares. Amer. Math. Monthly 87 (1980), 397–399.

    Article  Google Scholar 

  33. R. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973), 607–632.

    Article  Google Scholar 

  34. Combinatorial reciprocity theorems, Advances in Math. 14 (1974), 194–253.

    Google Scholar 

  35. Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, Duke Math. J. 43 (1976), 511–531.

    Google Scholar 

  36. — “Generating functions,” in Studies in Combinatorics (G.-C. Rota, ed.). Math. Assoc. of America, Washington, D.C, 1978, pp. 100–141.

    Google Scholar 

  37. Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333–342.

    Google Scholar 

  38. Linear diophantine equations and local cohomology, Inventiones Math. 68 (1982), 175–193.

    Google Scholar 

  39. J. von Neumann, “A certain zero-sum two person game equivalent to the optimal assignment problem,” in Contributions to the Theory of Games, vol. 2 (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies, no. 28, Princeton University Press (1950), 5–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Wadsworth, Inc., Belmont, California 94002

About this chapter

Cite this chapter

Stanley, R.P. (1986). Rational Generating Functions. In: Enumerative Combinatorics. The Wadsworth & Brooks/Cole Mathematics Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9763-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9763-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9765-0

  • Online ISBN: 978-1-4615-9763-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics