Skip to main content
  • 281 Accesses

Abstract

The measurement of linear viscoelastic properties of polymers is a very useful tool for polymer scientists and plastics engineers. These properties are readily measured, and they can be related to certain aspects of the molecular structure of a polymer. Moreover, the theory of linear viscoelasticity presented in Chapter 2, i.e., the Boltzmann superposition principle, is useful in providing relationships between the data obtained in different types of experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, 1985.

    Google Scholar 

  2. R. Larson, Constitutive Equations for Polymer Melts and Solutions, Butter-worths, Boston, 1988.

    Google Scholar 

  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986.

    Google Scholar 

  4. R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtis, Dynamics of Polymeric Liquids, Volume 2, Kinetic Theory, Second Edition, John Wiley & Sons, NY, 1987.

    Google Scholar 

  5. K. N. Sawyers, J. Elasticity 7:99 (1977).

    Article  Google Scholar 

  6. A. S. Lodge, Elastic Liquids, Academic Press, NY (1964).

    Google Scholar 

  7. A. S. Lodge, Trans. Faraday Soc. 52:120 (1956).

    Article  Google Scholar 

  8. A. S. Lodge and J. Meissner, Rheol. Acta 11:351 (1972).

    Article  Google Scholar 

  9. A. S. Lodge, Journal Non-Newt. Fl. Mech. 14:67 (1984).

    Article  Google Scholar 

  10. H. M. Laun, J. Rheol. 30:459 (1986).

    Article  Google Scholar 

  11. M. H. Wagner, Rheol. Acta 18:33 (1979).

    Article  Google Scholar 

  12. B. Bernstein, E. A. Kearsley and L. J. Zapas, J. Res. Nat. Bur. Stds. 68B:103 (1964).

    Google Scholar 

  13. R. I. Tanner, J. Rheol. 32:673 (1988).

    Article  Google Scholar 

  14. J. L. White and N. Tokita, J. Phys. Soc. Japan 22:719 (1967).

    Article  Google Scholar 

  15. M. H. Wagner, Rheol. Acta 15:136 (1976).

    Article  Google Scholar 

  16. B. J. Seth in: M. Reiner and D. Abir eds., Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, p. 162, Macmillan, NY, 1964.

    Google Scholar 

  17. H. C. Booij and J. H. M. Palmen, Rheol. Acta 21:376 (1982).

    Article  Google Scholar 

  18. S. A. Khan and R. G. Larson, J. Rheol. 31:207 (1987).

    Article  Google Scholar 

  19. P. J. R. Leblans, J. Sampers and H. C. Booij, J. Non-Newt. Fl. Mech. 19:185 (1985).

    Article  Google Scholar 

  20. H. M. Laun, Rheol. Acta 17:1 (1978).

    Article  Google Scholar 

  21. J. Meissner, Rheol. Acta 10:230 (1971).

    Article  Google Scholar 

  22. K. Osaki, Proc. VIIth Intern. Congr. Rheol., p. 104, Gothenburg, 1976.

    Google Scholar 

  23. L. J. Zapas, J. Res. Nat. Bur. Stds. 70A:525 (1966).

    Google Scholar 

  24. E. B. Adams and D. C. Bogue, A.I.Ch.E.J. 16:53 (1970).

    Article  Google Scholar 

  25. R. G. Larson, J. Rheol. 29:823 (1985).

    Article  Google Scholar 

  26. P R. Soskey and H. H. Winter, J. Rheol. 28:625 (1984).

    Article  Google Scholar 

  27. C. J. S. Petrie, J. Now-Newt. Fl. Mech. 5:147 (1979).

    Article  Google Scholar 

  28. H. C. Booij and J. H. M. Palmen, J. Non-Newt. Fl. Mech. 23:189 (1987).

    Article  Google Scholar 

  29. P. J. R. Leblans, J. Sampers and H. C. Booij, Rheol. Acta 24:152 (1985).

    Article  Google Scholar 

  30. M. H. Wagner, J. Non-Newt. Fl. Mech. 4:39 (1978).

    Article  Google Scholar 

  31. J. Meissner, Rheol Acta 10:230 (1971).

    Article  Google Scholar 

  32. A. C. Papanastasiou, L. E. Scriven and C. W. Macosko, J. Rheol. 27:387 (1983).

    Article  Google Scholar 

  33. H. M. Laun, M. H. Wagner and H. Janeschitz-Kriegl, Rheol. Acta 18:615 (1979).

    Article  Google Scholar 

  34. M. H. Wagner and S. E. Stephenson, J. Rheol. 23:489 (1979).

    Article  Google Scholar 

  35. M. H. Wagner and S. E. Stephenson, Rheol. Acta 25:463 (1979).

    Article  Google Scholar 

  36. M. H. Wagner and J. Meissner, Makromol. Chemie 18:1533 (1980).

    Article  Google Scholar 

  37. R. G. Larson and V. A. Valesano, J. Rheol. 30:1093 (1986).

    Article  Google Scholar 

  38. P. K. Currie in Rheology (Proc. VIII Intern. Congr. Rheol., Naples) Ed. by G. Astarita et al., Vol. 1, p. 357, Plenum Press, New York, (1980).

    Google Scholar 

  39. R. G. Larson, in Rheology (Proc. IX Intern. Congr. Rheol., Acapulco), Ed. by B. Mena et al., Vol. 1, p. 467, UNAM, Mexico City (1984).

    Google Scholar 

  40. Y. H. Lin, J. Rheol. 29:605 (1985).

    Article  Google Scholar 

  41. R. I. Tanner and R. R. Huilgol, Rheol. Acta 14:959 (1975).

    Article  Google Scholar 

  42. S. R. Doshi and J. M. Dealy, J. Rheol. 31:563 (1987).

    Article  Google Scholar 

  43. R. G. Larson, J. Non-Newt. Fl. Mech. 23:249 (1987).

    Article  Google Scholar 

  44. T. Samurkas, R. G. Larson and J. M. Dealy, J. Rheol. 33:559 (1989).

    Article  Google Scholar 

  45. J. Meissner, Ann. Rev. Fluid Mech. 17:45 (1985).

    Article  Google Scholar 

  46. A. Demarmels and J. Meissner, Coll. Polym. Sci. 264:829 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1990). Introduction to Nonlinear Viscoelasticity. In: Melt Rheology and Its Role in Plastics Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9738-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9738-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9740-7

  • Online ISBN: 978-1-4615-9738-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics