Skip to main content

Bacterial Chemotaxis

  • Chapter

Part of the book series: Receptors and Recognition ((SERB,volume 3))

Abstract

The unpublished studies cited here were supported by Public Health Service Grants GM 19559 from The National Institute of General Medical Studies (to J.S.P.) and AI 12858 from The National Institute of Allergy and Infectious Diseases and a grant from the Swedish Natural Sciences Research Council (to G.L.H.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J. (1966), Chemotaxis in bacteria. Science ,153, 708–716.

    Google Scholar 

  • Adler, J. (1969), Chemoreceptors in bacteria. Science ,166, 1588–1597.

    Google Scholar 

  • Adler, J. (1973), A method for measuring Chemotaxis and use of the method to determine optimum conditions for Chemotaxis by Escherichia coli. J. gen. Micro Biol. ,74, 77–91.

    Google Scholar 

  • Adler, J. (1974a), Chemoreception in bacteria. Antibiotics and Chemotherapy ,19, 12–20.

    Google Scholar 

  • Adler, J. (1974b), Chemotaxis in bacteria. Hoppe Seylers Z. Physiol. Chem. ,355, 105.

    Google Scholar 

  • Adler, J. (1975), Chemotaxis in bacteria. Ann Rev. Biochem. ,44, 341–356.

    Google Scholar 

  • Adler, J. (1976), Chemotaxis in bacteria. InThe Taxes and Tropisms of Microorganisms and Cells. (M.S. Carlile, ed.), Academic Press, London.

    Google Scholar 

  • Adler, J. and Dahl, M. (1967), A method for measuring the motility of bacteria and for comparing random and non-random motility. J. gen. Micro Biol. ,46, 161–173.

    Google Scholar 

  • Adler, J. and Epstein, W. (1974), Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli Chemotaxis. Proc. natn. Acad. Sci. U.S.A., 71,2895–2899.

    Google Scholar 

  • Adler, J., Hazelbauer, G.L. and Dahl, M.M. (1973), Chemotaxis toward sugars in Escherichia coli. J. Bact. ,115, 824–847.

    Google Scholar 

  • Adler, J. and Tso, W-W. (1974), ’Decision’-making in bacteria: Chemotactic response of Escherichia coli to conflicting stimuli. Science ,184, 1292–1294.

    Google Scholar 

  • Aksamit, R. and Koshland, D.E., Jr. (1972), A ribose-binding protein of Salmonella typhimurium. Biochem. biophys. Res. Commun. ,48, 1348–1353.

    Google Scholar 

  • Aksamit, R.R. and Koshland, D.E., Jr. (1974), Identification of the ribose-binding protein as the receptor for ribose Chemotaxis in Salmonella typhimurium. Biochemistry ,13, 4473–4478.

    Google Scholar 

  • Aksamit, R.R., Howlett, B.J. and Koshland, D.E., Jr. (1975), Soluble and membrane-bound aspartate-binding activities in Salmonella typhimwium. J. Bact. ,123, 1000–1005.

    Google Scholar 

  • Anderson, R.A. (1975), Formation of the bacterial flagellar bundle. InSwimming and Flying in Nature ,(T.Y.T. Wu, C.J. Brokaw, and C. Brennan, eds.), Vol. 1, Plenum, New York, pp. 45–56.

    Google Scholar 

  • Anraku, Y. (1968), Transport of sugars and amino acids in Bacteria I: Purification and specificity of the galactose-and leucine-binding proteins. J. biol. Chem., 243, 3116–3122.

    Google Scholar 

  • Armstrong, J.B. (1972a), Chemotaxis and methionine metabolism in Escherichia coli. Can. J. Micro Biol. ,18, 591–596.

    Google Scholar 

  • Armstrong, J.B. (1972b), An S-adenosylmethionine requirement for Chemotaxis in Escherichia coli. Can. J. Micro Biol. ,18, 1695–1701.

    Google Scholar 

  • Armstrong, J.B. and Adler, J. (1969a), Location of genes for motility and Chemotaxis on the Escherichia coli genetic map. J. Bact. ,97, 156–161.

    Google Scholar 

  • Armstrong, J.B. and Adler, J. (1969b), Complementation of nonchemotactic mutants of Escherichia coli. Genetics ,61, 61–66.

    Google Scholar 

  • Armstrong, J.B., Adler, J. and Dahl, M.M. (1967), Nonchemotactic mutants of Escherichia coli. J. Bact. ,93, 390–398.

    Google Scholar 

  • Aswad, D. and Koshland, D.E., Jr. (1974), Role of methionine in bacterial Chemotaxis. J. Bact., 118, 640–645.

    Google Scholar 

  • Aswad, D. and Koshland, D.E., Jr. (1975a), Isolation, characterization and complementation of Salmonella typhimurium Chemotaxis mutants. J. mol. Biol., 97, 225–235.

    Google Scholar 

  • Aswad, D.W. and Koshland, D.E., Jr. (1975b), Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. J. mol. Biol. ,97, 207–223.

    Google Scholar 

  • Bachmann, B.L., Low, K.B. and Taylor, A.L. (1976), Recalibrated linkage map of Escherichia coli K12. Bact., Rev. ,40, 116–167.

    Google Scholar 

  • Berg, H.C. (1971), How to track bacteria. Rev. Sci. Instrum. ,42, 868–871.

    Google Scholar 

  • Berg, H.C. (1974). Dynamic properties of bacterial flagellar motors. Nature ,249,77–79.

    Google Scholar 

  • Berg, H.C. (1975a), Chemotaxis in bacteria. Ann. Rev. Biophysics Bioengineering,4, 119–136.

    Google Scholar 

  • Berg, H.C. (1975b), Bacterial behavior. Nature ,254, 389–392.

    Google Scholar 

  • Berg, H.C. and Anderson, R.A. (1973), Bacteria swim by rotating their flagellar filaments. Nature ,245, 380–382.

    Google Scholar 

  • Berg, H.C. and Brown, D.A. (1972), Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature ,239, 500–504.

    Google Scholar 

  • Berg, H.C. and Brown, D.A. (1974), Chemotaxis in Escherichia coli analyzed by three-dimensional tracking: Addendum. Antibiotics and Chemotherapy,19, 55–78.

    Google Scholar 

  • Berg, H.C. and Tedesco, P.M. (1975), Transient response to chemotactic stimuli inEscherichia coli. Proc. natn. Acad. Sci. U.S.A. ,72, 3235–3239.

    Google Scholar 

  • Boos, W. (1972), Structurally defective galactose-binding protein isolated from a mutant negative in the ß-methyl-galactoside transport system of Escherichia coli. J. biol. Chem. ,247, 5414–5424.

    Google Scholar 

  • Boos, W. (1974), The properties of the galactose-binding protein, the possible chemoreceptor for galactose Chemotaxis in Escherichia coli. Antibiotics and Chemotherapy ,19, 21–54.

    Google Scholar 

  • Boos, W. (1974), Bacterial transport. Ann. Rev. Biochem. ,43, 123–146.

    Google Scholar 

  • Boos, W. and Gordon, A.S. (1971), Transport properties of the galactose-binding protein of Escherichia coli: occurrence of two conformational states. J. biol. Chem. ,246, 621.

    Google Scholar 

  • Boos, W., Gordon, A.S., Hall, R.E. and Price, H.D. (1972), Transport properties of the galactose-binding protein of Escherichia coli. Substrate induced conformational change.J. biol. Chem. ,247, 917–924.

    Google Scholar 

  • Brokaw, C.J. (1958), Chemotaxis of bracken spermatozoids.J. exp. Biol. ,35,197–212.

    Google Scholar 

  • Brown, D.A. and Berg, H.C. (1974), Temporal stimulation of Chemotaxis in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. ,71, 1388–1392.

    Google Scholar 

  • Collins, A.L. and Stocker, B.A.D. (1976), Salmonella typhimurium mutants generally defective in Chemotaxis. J. Bact. ,128, 754–765.

    Google Scholar 

  • Dahl, J.L. and Hokin, L.E. (1974), The sodium-potassium adenosine-triphosphatase. Ann. Rev. Biochem. ,43, 327–356.

    Google Scholar 

  • Dahlquist, F.W., Lovely, P. and Koshland, D.E., Jr. (1972), Quantitative analysis of bacterial migration in Chemotaxis. Nature ,236, 120–123.

    Google Scholar 

  • DeJong, M.H., Van der Drift, C. and Vogels, G.D. (1975), Receptors for Chemotaxis in Bacillus subtilis. J. Bact. ,123, 824–827.

    Google Scholar 

  • DePamphilis, M.L. and Adler, J. (1971a), Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bact. ,105, 376–383.

    Google Scholar 

  • DePamphilis, M.L. and Adler, J. (1971b), Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis.J. Bact. ,105, 384–395.

    Google Scholar 

  • DePamphilis, M.L. and Adler, J. (1971c), Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J. Bact. ,105, 396–407.

    Google Scholar 

  • Engelmann, T.W. (1883a), Bacterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes. Pflugers Archiv für gesammte Physiologie ,95–124.

    Google Scholar 

  • Engelmann, T.W. (1883b), Prufung des Diathermanitat einiger Medien mittelst Bacterium photometricum. Pfugler’s Archiv für gesammte Physiologie,125–128.

    Google Scholar 

  • Epstein, W. and Curtis, S.J. (1972), Genetics of the phosphotransferase system. Role of Membranes in Secretory Processes. (L. Bolis, R.D. Keynes,W. Wilbrandt, eds.), North Holland, Amsterdam, p. 98–112.

    Google Scholar 

  • Fraenkel, G.S. and Gunn, D.L. (1940), The orientation of animals: kineses, taxes,and compass reactions. Clarendon Press, Oxford.

    Google Scholar 

  • Futrelle, R.P. and Berg, H.C. (1972), Specification of gradients used for studies of Chemotaxis, Nature ,239, 517–518.

    Google Scholar 

  • Gunn, D.L. (1975), The meaning of the term ’klinokinesis’ Anim. Behav. ,23, 409–412.

    Google Scholar 

  • Harold, F.M. (1972), Conservation and transformation of energy by bacterial membranes. Bact. Rev. ,36, 172–230.

    Google Scholar 

  • Harwood, J.P., Cazdar, C., Prasad, C., Peterkofsky, A., Curtis, S.J. and Epstein, W. (1976), Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coll J. biol. Chem. ,251, 2462–2468.

    Google Scholar 

  • Hazelbauer, G.L. (1974), Chemoreception in Escherichia coli In:.Transduction Mechanisms in Chemoreception. (T.M. Poynder, ed.), Information Retrieval Ltd. London, p. 149–157.

    Google Scholar 

  • Hazelbauer, G.L. (1975a), The maltose chemoreceptor of Escherichia coli. J. Bact. ,122, 206–214.

    Google Scholar 

  • Hazelbauer, G.L. (1975b), The binding of maltose to ’virgin’ maltose-binding protein is biphasic. Eur. J. Biochem. ,60, 445–449.

    Google Scholar 

  • Hazelbauer, G.L. (1975c), Role of the receptor for bacteriphage in the functioning of the maltose chemoreceptor of Escherichia coli. J. Bact. ,124, 119–126.

    Google Scholar 

  • Hazelbauer, G.L. and Adler, J. (1971), Role of the galactose-binding protein in Chemotaxis of Escherichia coli toward galactose. Nature New Biol. ,230, 101–104.

    Google Scholar 

  • Hazelbauer, G.L., Mesibov, R.E. and Adler, J. (1969), Escherichia coli mutants defective in Chemotaxis toward specific chemicals. Proc. natn. Acad. Sci. U.S.A.,64, 1300–1307.

    Google Scholar 

  • Hilmen, M., Silverman, M. and Simon, M. (1974), The regulation of flagellar formation and function, J. supramol. Struct. ,2, 360–371.

    Google Scholar 

  • Hilmen, M. and Simon, M. (1976), Motility and the structure of bacterial flagella. In:Cell Motility (Goldman, R., Pollard, T. and Rosebaum, J., eds.), book A, pp. 35– 45, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Hofnung, M. (1974), Divergent Operons and the genetic structure of the maltose B region in Escherichia coli K 12. Genetics ,76, 169–184.

    Google Scholar 

  • Hofnung, M., Hatfield, D. and Schwartz, M. (1974), malB region in Escherichia coli K1 2: characterization of new mutations. J. Bact. ,117, 40–47.

    Google Scholar 

  • Hogg, R.W. and Engelsberg, E. (1969), L-arabinose binding protein from Escherichia coli B/r J. Bact. ,100, 423–432.

    Google Scholar 

  • Kaback, H.R. (1974), Transport studies in bacterial membrane vesicles. Science ,186,882–892.

    Google Scholar 

  • Kalckar, H.M. (1971), The periplasmic galactose-binding protein of Escherichia coli. Science ,174, 557–565.

    Google Scholar 

  • Kellerman, O. and Szmelcman, S. (1974), Active transport of maltose in Escherichia coli K12: involvement of a ’periplasmic’ maltose-binding protein. Eur. J. Biochem. ,47, 139–149.

    Google Scholar 

  • Kepes, A. and Richarme, G., (1972), Interactions between galactose-and galactose-binding protein of Escherichia coli. Fed. Eur. Biochem. Soc. Proc. 8th Meeting ,Amsterdam (Van den Bergh et al. ,eds.) North Holland, Amsterdam, 28, 327.

    Google Scholar 

  • Kort, E.N. (1975), Information processing: the role of methionine in bacterial Chemotaxis, Ph.D. thesis University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • Kort, E.N., Goy, M.F., Larsen, S.H. and Adler, J. (1975), Methylation of a membrane protein involved in bacterial Chemotaxis. Proc. natn. Acad. Sci. U.S.A. ,72,3939–3943.

    Google Scholar 

  • Koshland, D.E., Jr. (1974), Chemotaxis as a model for sensory systems. FEBS Letters ,40, (suppl), S3–S9.

    Google Scholar 

  • Koshland, D.E., Jr. (1976), Sensory response in bacteria. J. Adv. Neurochem. (in press).

    Google Scholar 

  • Kundig, W. and Roseman, S. (1971), Sugar transport II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J. biol. Chem. ,246, 1407–1418.

    Google Scholar 

  • Larsen, S.H., Reader, R.W., Kort, E.M., Tso, W.W. and Adler, J. (1974a), Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature ,249, 74–77.

    Google Scholar 

  • Larsen, S.H., Adler, J., Gargus, J.J. and Hogg, R.W. (1974b), Chemomechanical coupling without ATP: the source of energy for motility and Chemotaxis in bacteria. Proc. natn. Acad. Sci. U.S.A. ,71, 1239–1243.

    Google Scholar 

  • Lengeler, J. (1975a), Mutations affecting transport of the hexitols D-mannitol, D-glucitol and galacitol in Escherichia coli K12: Isolation and mapping. J. Bact. ,124, 26–38.

    Google Scholar 

  • Lengeler, J. (1975b), Nature and properties of hexitol transport systems in Escherichia coli. J. Bact. ,124, 39–47.

    Google Scholar 

  • Lovely, P., Dahlquist, F.W., Macnab, R. and Koshland, D.E., Jr. (1974), An instrument for recording the motions of micro-organisms in chemical gradients. Rev. Sci. Instrum. ,45, 683–686.

    Google Scholar 

  • Macnab, R.M. (1977), Bacterial flagella rotating in bundles: a study in helical geometry. Proc. natn. Acad. Sci. U.S.A. ,74, 221–225.

    Google Scholar 

  • Macnab, R.M. and Koshland, D.E., Jr. (1972), The gradient-sensing mechanism in bacterial Chemotaxis. Proc. natn. Acad. Sci. U.S.A. ,69, 2509–2512.

    Google Scholar 

  • Macnab, R. and Koshland, D.E., Jr. (1973), Persistence as a concept in the motility of chemotactic bacteria. J. Mechanochem. Cell Motility ,2, 141 -148.

    Google Scholar 

  • Macnab, R. and Koshland, D.E., Jr. (1974), Bacterial motility and Chemotaxis: Light-induced tumbling response and visualization of individual flagella. J. mol. Biol. ,84, 399–406.

    Google Scholar 

  • Macnab, R. and Oruston, M.K. (1977), Polymorphic flagellar transitions in bacterial motility: the induction of discrete changes in polymeric structure by mechanical force. J. Mol. Biol. ,(In press).

    Google Scholar 

  • Maeda, K., Imae, Y., Shioi, J-I. and Oosawa, F. (1976), Effect of temperature on motility and Chemotaxis of Escherichia coli. J. Bact. ,127, 1039–1046.

    Google Scholar 

  • McGowan, E.B., Silhavy, T.J. and Boos, W. (1974), Involvement of a tryptophan residue in the binding site of Escherichia coli galactose-binding protein. Biochemistry ,13, 993–999.

    Google Scholar 

  • Mesibov, R. and Adler, J. (1972), Chemotaxis toward amino acids in Escherichia coli. J. Bact. ,112, 315–326.

    Google Scholar 

  • Mesibov, R., Ordal, G.W. and Adler, J. (1973), The range of attractant concentrations for bacterial Chemotaxis and the threshold and size of response over this range.J. gen. Physiol ,62, 203–223.

    Google Scholar 

  • Mitchell, P. (1966), Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev. ,41, 445–502.

    Google Scholar 

  • Ordal, G.W. (1976a), Recognition sites for chemotactic repellents of Bacillus subtilis. J. Bact. ,126, 72–79.

    Google Scholar 

  • Ordal, G.W. (1976b), Control of tumbling in bacterial Chemotaxis by divalent cation. J. Bact. ,126, 706–111.

    Google Scholar 

  • Ordal, G.W. (1976c), Effect of methionine on Chemotaxis by Bacillus subtilis, J. Bact. ,125, 1005–1012.

    Google Scholar 

  • Ordal, G.W. and Adler, J. (1974a), Isolation and complementation of mutants in galactose taxis and transport, J. Bact. ,117, 509–516.

    Google Scholar 

  • Ordal, G.W. and Adler, J. (1974b), Properties of mutants in galactose taxis and transport. J. Bact. ,117, 517–526.

    Google Scholar 

  • Ordal, G.W. and Fields, R.B. (1977), A biochemical mechanism for bacterial Chemotaxis. J. Theor. Biol. ,(In press).

    Google Scholar 

  • Ordal, G.W. and Gibson, K.J. (1977), Chemotaxis toward amino acids by Bacillus subtilis. J. Bact. ,129, 151–155.

    Google Scholar 

  • Ordal, G.W. and Goldman, D.J. (1975), Chemotaxis away from uncouplers of Oxidative phosphorylation in Bacillus subtilis. Science ,189, 802–804.

    Google Scholar 

  • Ordal, G.W. and Goldman, D.J. (1976), Chemotactic repellents of Bacillus subtilis. J. mol. Biol. ,100, 103–108.

    Google Scholar 

  • Ordal, G.W., Vilani, D.P. and Gibson, K.J. (1977), Amino acid chemoreceptors of Bacillus subtilis. J. Bact. ,129, 156–165.

    Google Scholar 

  • Oxender, D.L. (1972), Membrane transport. Ann. Rev. Biochem. ,41, 777–814.

    Google Scholar 

  • Parkinson, J.S. (1974), Data processing by the Chemotaxis machinery of Escherichia coli. Nature ,252, 317–319.

    Google Scholar 

  • Parkinson, J.S. (1975), Genetics of chemotactic behavior in bacteria. Cell ,4, 183–188.

    Google Scholar 

  • Parkinson, J.S. (1976), che A, che B and che C genes of Escherichia coli and their role in Chemotaxis. J. Bact ,126, 758–770.

    Google Scholar 

  • Parsons, R.G. and Hogg, R.W. (1974), A comparison of the L-arabinose-and D-galactose-binding proteins of Escherichia coli B/r. J. biol. Chem. ,249, 3608–3614.

    Google Scholar 

  • Pfeffer, W. (1883), Locomotorische Richtungsbewegungen durch chemische Reize. Berichte der Deutschen Botanischen Gesellschaft 1, 524–533.

    Google Scholar 

  • Pfeffer, W. (1904), Pflanzenphysiologie ,Vol. 2. Wilhelm Engelman, p. 798–814.

    Google Scholar 

  • Randall-Hazelbauer, L.L. and Schwartz, M. (1973), Isolation of the bacteriophage lambda receptor from Escherichia coli. J. Bact. ,116, 1436–1446.

    Google Scholar 

  • Rasched, I., Shuman, H. and Boos, W. (1976), The dimer of the E. coli galactose-binding protein. Eur. J. Biochem. 69, 545–550.

    Google Scholar 

  • Richarme, G. and Kepes, A. (1974), Release of glucose from purified galactose-binding protein of Escherichia coli upon addition of galactose. Eur. J. Biochem. 45, 129–133.

    Google Scholar 

  • Robbins, A.R. (1975), Regulation of the Escherichia coli methylgalactoside transport system by gene mglD. J. Bact. ,123, 69–74.

    Google Scholar 

  • Robbins, A.R., Guzman, R. and Rotman, B. (1976), Roles of individual mgl gene products in the ß-methylgalactoside transport system of Escherichia coli. K12. J. biol. Chem. ,251, 3112–3116.

    Google Scholar 

  • Robbins, A.R. and Rotman, B. (1975), Evidence for binding protein-independent substrate translocation by the methyl-galactoside transport system of Escherichia coli K12. Proc. natn. Acad. Sci. U.S.A. ,72, 423–427.

    Google Scholar 

  • Roseman, S. (1972), Carbohydrate transport in bacterial cells, Metabolic Pathways ,3rd edn., Vol Vi ,Metabolic Transport (L.E. Hokin, ed.), Academic Press, New York.

    Google Scholar 

  • Rosen, B.P. and Heppel, L.A. (1973), Present status of binding proteins that are released from Gram-negative bacteria by osmotic shock. Bacterial Membranes and Walls. (L. Leive, ed.), Marcel Dekker, New York.

    Google Scholar 

  • Rothert, W. (1901), Beobachtungen und Betrachtungen uber Tactische Reizerscheinungen, Flora ,88, 391–421.

    Google Scholar 

  • Rotman, B. and Ellis, J.H., Jr. (1972), Antibody-mediated modification of the binding properties of a protein related to galactose transport. J. Bact. ,111, 791–796.

    Google Scholar 

  • Schleif, R. (1969), An L-arabinose binding protein and arabinose permeation in Escherichia coli. J. mol. Biol. ,46, 185–196.

    Google Scholar 

  • Schwartz, M., Kellermann, O., Szmelcman, S. and Hazelbauer, G.L. (1976), Further studies of the binding of maltose to the maltose-binding protein of Escherichia coli. Eur. J. Biochem. ,71, 167–170.

    Google Scholar 

  • Silhavy, T.J. and Boos, W. (1975), The ’hidden ligan of the galactose-binding protein. Eur. J. Biochem. ,54, 163–167.

    Google Scholar 

  • Silhavy, T.J., Szmelcman, S., Boos, W. and Schwartz, W. (1975), On the significance of the retention of ligand by protein. Proc. natn. Acad. Sci. U.S.A. ,72, 2120–2124.

    Google Scholar 

  • Silverman, M. and Simon, M. (1972), Flagellar assembly mutants in Escherichia coli. J. Bact. ,112, 986–993.

    Google Scholar 

  • Silverman, M. and Simon, M. (1973a), Genetic analysis of flagellar mutants in Escherichia coli. J. Bact. ,113, 105–113.

    Google Scholar 

  • Silverman, M. and Simon, M. (1973b), Genetic analysis of bacteriophage Mu-induced flagellar mutants in Escherichia coli. J. Bact. ,116, 114–122.

    Google Scholar 

  • Silverman, M. and Simon, M. (1974), Flagellar rotation and the mechanism of Bacterial motility. Nature ,249, 73–74.

    Google Scholar 

  • Simoni, R.D. and Postma, P.W. (1975), The energetics of bacterial active transport. Ann. Rev. Biochem. ,44, 523–554.

    Google Scholar 

  • Springer, M.S., Kort, E.N., Larsen, S.H., Ordal, G.W., Reader, R.W. and Adler, J. (1975), Role of methionine in bacterial Chemotaxis; requirement for tumbling and involvement in information processing. Proc. natn. Acad. Sci. U.S.A. ,72, 4640–4644.

    Google Scholar 

  • Spudich, J.L. and Koshland, D.F., Jr. (1975), Quantitation of the sensory response in bacterial Chemotaxis. Proc. natn. Acad. Sci. U.S.A. ,72, 710–713.

    Google Scholar 

  • Strange, P.G. and Koshland, D.E., Jr. (1976), Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the Chemotaxis response. Proc. natn. Acad. Sci. U.S.A. ,73, 762–766.

    Google Scholar 

  • Szmelcman, S. and Adler, J. (1976), Change in membrane potential during bacterial Chemotaxis. Proc. natn. Acad. Sci. U.S.A. ,73, 4387–4391.

    Google Scholar 

  • Szmelcman, S. and Hofnung, M. (1975), Maltose transport in Escherichia coli K12: involvement of the bacteriophage -receptor. J. Bact. ,124, 112–118.

    Google Scholar 

  • Szmelcman, S., Schwartz, M., Silhavy, T.J. and Boos, W. (1976), Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and -resistant mutants with the dissociation constants of the maltose-binding protein as measured by fluorescence quenching. Eur. J. Biochem. ,65, 13–19.

    Google Scholar 

  • Tsang, N., Macnab, R''. and Koshland, D.E., Jr. (1973), Common mechanism for repellents and attractants in bacterial Chemotaxis. Science ,181, 60–63.

    Google Scholar 

  • Tso, W.W. and Adler, J. (1974), Negative Chemotaxis in Escherichia coli ,J. Bact. ,118, 560–576.

    Google Scholar 

  • Van der Drift, C. and De Jong, M.H. (1974), Chemotaxis toward amino acids in Bacillus subtilis. Arch. Microiol. ,96, 83–92.

    Google Scholar 

  • Van der Drift, C., Duiverman, J., Bexkens, H. and Krijnen, A. (1975), Chemotaxis of a motile streptococcus toward sugars and amino acids. J. Bact. ,124, 1142–1147.

    Google Scholar 

  • Vary, P.S. and Stocker, B.A.D. (1973), Nonsense motility mutants in Salmonella typhimurium. Genetics ,73, 229–245.

    Google Scholar 

  • Warrick, H.M., Taylor, B.L. and Koshland, D.E. Jr. (1977), The chemotactic mechanism of Salmonella typhimurium: mapping and characterization of mutants. J. Bact. ,(in press).

    Google Scholar 

  • White, R.J. (1970), The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli. Biochem. J. ,118, 89–92.

    Google Scholar 

  • Willis, R.C. and Furlong, C.W. (1974), Purification and properties of a ribose-binding protein from Escherichia coli. J. biol. Chem. ,249, 6926–6929.

    Google Scholar 

  • Wilson, O.H. and Holden, J.T. (1969a), Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions. J. biol. Chem. ,244, 2743–2749.

    Google Scholar 

  • Wilson, O.H. and Holden, J.T. (1969b), Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J. biol. Chem. ,244, 2737–2742.

    Google Scholar 

  • Zukin, R.S. and Koshland, D.F., Jr. (1976), Mg2+, Ca2+-dependent adenosine triphosphatase as receptor for divalent cations in bacterial sensing. Science ,193, 405–408.

    Google Scholar 

  • Zukin, R.S., Strange, P.G., Heavy, L.R. and Koshland, D.E., Jr. (1976), Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry ,16, 381–386.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Chapman and Hall

About this chapter

Cite this chapter

Hazelbauer, G.L., Parkinson, J.S. (1977). Bacterial Chemotaxis. In: Reissig, J.L. (eds) Microbial Interactions. Receptors and Recognition, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9698-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9698-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9700-1

  • Online ISBN: 978-1-4615-9698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics