Skip to main content

Cytokine Effects on Neuroendocrine Axes: Influence of Nitric Oxide and Carbon Monoxide

  • Chapter
Cytokines in the Nervous System

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

The existence of bilateral communication between the immune and neuroendocrine systems is now well established. The products of the neuroendocrine system, hormones such as corticosteroids, prolactin and growth hormone, have pronounced effects on a variety of aspects of immunoregulation, including T lymphocyte selection, splenic lymphocyte release and the expression and secretion of the intercellular mediators within the immune system (i.e., cytokines). Conversely, a number of cytokines exert potent effects on the synthesis and secretion of many hormones. Not surprisingly therefore, the immune and neuroendocrine systems share many of the same ligands and receptors, and function utilizing a common chemical language.1 For example, lymphocytes contain mediators which are similar/identical to hormones, such as pro-opiomelanacortin products [adrenocorticotropin (ACTH), endorphins, enkephalins], growth hormone and prolactin, as well as expressing their respective receptors. On the other hand, the master endocrine gland, the pituitary, secretes and possesses cognate receptors for, a number of cytokines (e.g., interleukin-1 (IL-1), IL-6 and tumor necrosis factor-α (TNF-α)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blalock JE. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 1989; 69: 1–32.

    PubMed  CAS  Google Scholar 

  2. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351–62.

    Article  PubMed  CAS  Google Scholar 

  3. Sims JE, Giri JG, Dower SK. The two interleukin–1 receptors play different roles in IL–1 actions. Clin Immunol Immunopathol 1994; 72: 9–14.

    Article  PubMed  CAS  Google Scholar 

  4. Greenfeder SA, Nunes P, Kwee L et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J Biol Chem 1995; 270: 13757–65.

    Article  PubMed  CAS  Google Scholar 

  5. Ban EM, Milon G, Fillion G et al. Receptors for interleukin–1 (a and p) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience 1991; 43: 21–30.

    Article  PubMed  CAS  Google Scholar 

  6. Ban E, Marquette C, Sarrieau A et al. Regulation of interleukin–1 receptor expression in mouse brain and pituitary by lipopolysaccharide and glucocorticoids. Neuroendocrinology 1993; 58: 581–87.

    Article  PubMed  CAS  Google Scholar 

  7. Cunningham ET Jr, Wada E, Carter DB et al. In situ histochemical localization of type I interleukin–1 receptor mRNA in the central nervous system, pituitary, and adrenal gland of the mouse. J Neurosci 1992; 12: 1101–14.

    PubMed  CAS  Google Scholar 

  8. Cunningham ET Jr, Wada E, Carter DB et al. Localization of interleukin-1 receptor messenger RNA in murine hippocampus. Endocrinology 1991; 128: 2666–68.

    Article  PubMed  CAS  Google Scholar 

  9. Marquetee C, Van Dam A-M, Can E et al. Rat interleukin–1(3 binding sites in rat hypothalamus and pituitary gland. Neuroendocrinology 1995; 62: 362–69.

    Article  Google Scholar 

  10. Ericsson A, Liu C, Hart RP et al. Type I interleukin–1 receptor in the rat brain: distribution, regulation and relationship to sites in IL–1-induced cellular activation. J Comp Neurol 1995; 361: 681–98.

    Article  PubMed  CAS  Google Scholar 

  11. Schobitz B, Voorhuis DAM, De Kloet ER. Localization of interleukin–6 mRNA and interleukin 6 receptor mRNA in rat brain. Neurosci Lett 1992; 136: 189–92.

    Article  PubMed  CAS  Google Scholar 

  12. Cornfield LJ, Sills MA. High affinity interleukin-6 binding sites in bovine hypothalamus. Eur J Pharmacol 1991; 202: 113–15.

    Article  PubMed  CAS  Google Scholar 

  13. Kinouchi K, Brown G, Pasternak G et al. Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Com 1991; 18: 1532–38.

    Article  Google Scholar 

  14. Wolvers DA, Marquette C, Berkenbosch F et al. Tumor necrosis factor- alpha: specific binding sites in rodent brain and pituitary gland. Eur Cytokine. Net 1993; 4: 377–81.

    CAS  Google Scholar 

  15. Ohmichi M, Hirota K, Koike K et al. Binding sites for interleukin–6 in the anterior pituitary gland. Neuroendocrinology 1992; 55: 199–203.

    Article  PubMed  CAS  Google Scholar 

  16. Takao T, Mitchell WM, Tracey DE et al. Identification of interleukin–1 receptors in mouse testis. Endocrinology 1990; 127: 251–58.

    Article  PubMed  CAS  Google Scholar 

  17. Cunningham ET Jr, Wada E, Carter DB et al. Distribution of Type I interleukin–1 receptor mRNA in testis: an in situ histochemical study in the mouse. Neuroendocrinology 1992; 56: 94–99.

    Article  PubMed  CAS  Google Scholar 

  18. Okuda Y, Morris PL. Identification of interleukin–6 receptor (IL–6R) mRNA in isolated Sertoli and Leydig cells: regulation by gonadotropin and interleukins in vitro. Endocrine 1994; 2: 1163–68.

    CAS  Google Scholar 

  19. Hurwitz A, Loukides J, Ricciarelli E et al. Human intraovarian interleukin-1 (IL–1) system: highly compartmentalized and hormonally dependent regulation of the genes encoding IL–1, its receptor, and its receptor antagonist. J Clin Invest 1992; 89: 1746–54.

    Article  PubMed  CAS  Google Scholar 

  20. Svenson M, Kayser L, Hansen MB et al. Interleukin–1 receptors on human thyroid cells and on the rat thyroid cell line FRTL-5. Cytokine 1991; 3: 125–30.

    Article  PubMed  CAS  Google Scholar 

  21. Kasai K, Hiraiwa M, Emoto T et al. Presence of high affinity receptor for interleukin–1 (IL–1) on cultured porcine thyroid cells. Horm Metabol Res 1990; 22: 75–79.

    Article  CAS  Google Scholar 

  22. Yabuuchi K, Minami M, Katsumata S et al. Localization of type I interleukin–1 receptor mRNA in the rat brain. Mol Brain Res 1994; 27: 27–36.

    Article  PubMed  CAS  Google Scholar 

  23. Wong M-L, Licinio J Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation 1994; 1: 110–15.

    CAS  Google Scholar 

  24. Takao T, Newton RC, De Souza EB. Species differences [125I]interleukin- 1 binding in brain, endocrine and immune tissues. Brain Res 1993; 623: 172–76.

    Article  PubMed  CAS  Google Scholar 

  25. Schobitz B, De Kloet ER, Sutanto W et al. Cellular localization of interleukin–6 mRNA and interleukin–6 receptor mRNA in rat brain. Eur J Neurosci 1993; 5: 1426–35.

    Article  PubMed  CAS  Google Scholar 

  26. Gradient RA, Otten U. Differential expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat hypothalamus. Neurosci Lett 1993; 153: 13-16.

    Article  Google Scholar 

  27. Gradient RA, Otten U. Expression of interleukin–6 (IL–6) and interleukin- 6 receptor (IL–6R) mRNAs in rat brain during postnatal development. Brain Res 1994; 637: 10–14.

    Article  Google Scholar 

  28. Gradient RA, Otten U. Identification of interleukin–6 (IL–6)-expressing neurons in the cerebellum and hippocampus of normal adult rats. Neurosci Lett 1994; 182: 243–46.

    Article  Google Scholar 

  29. Turnbull AV, Rivier CL. Regulation of the HPA axis by cytokines. Brain Behav Immun 1995; 9: 253–75.

    Article  PubMed  CAS  Google Scholar 

  30. Rivest S, Rivier C. The role of corticotropin-releasing factor and interleukin–1 in the regulation of neurons controlling reproductive functions. Endocr Rev 1995; 16:177–99»

    Google Scholar 

  31. Peisen JN, McDonnell KJ, Mulroney SE et al. Endotoxin-induced suppression of the somatotropic axis is mediated by interleukin–1 p and corticotropin-releasing factor in the juvenille rat. Endocrinology 1995; 136: 3378–90.

    Article  PubMed  CAS  Google Scholar 

  32. Sapolsky R, Rivier C, Yamamoto G et al. Interleukin–1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987; 238: 522–24.

    Article  PubMed  CAS  Google Scholar 

  33. Watanobe H, Takebe K. Effects of intravenous administration of interleukin–1 beta on the release of prostaglandin E2, corticotropin-releasing factor, and arginine vasopressin in several hypothalamic areas of freely moving rats: estimation by push-pull perfusion. Neuroendocrinology 1994; 60: 8–15.

    Article  PubMed  CAS  Google Scholar 

  34. Tsagarakis S, Gillies G, Rees LH et al. Interleukin–1 directly stimulates the release of corticotrophin releasing factor from rat hypothalamus. Neu- roendocrinology 1989; 49: 98–101.

    CAS  Google Scholar 

  35. Rivest S, Lee S, Attardi B et al. The chronic intracerebroventricular infusion of interleukin–1 (3 alters the activity of the hypothalamic-pituitarygonadal axis of cycling rats. I. Effect on LHRH and gonadotropin biosynthesis and secretion. Endocrinology 1993; 133: 2424–30.

    Article  PubMed  CAS  Google Scholar 

  36. Rivest S, Rivier C. Centrally injected interleukin–1 p inhibits the hypothalamic LHRH secretion and circulating LH levels via prostaglandins in rats. J Neuroendocrinol. 1993; 5: 445–50.

    Article  PubMed  CAS  Google Scholar 

  37. Kennedy JA, Wellby ML, Zotti R. Effect of interleukin–1 p, tumor necrosis factor-a and interleukin–6 on the control of thyrotropin secretion. Life Sci 1995; 57: 487–501.

    Article  PubMed  CAS  Google Scholar 

  38. Scarborough DE, Lee S, Dinarello CA et al. Interleukin–1 p stimulates somatostain biosynthesis in primary culture of fetal rat brain. Endocrinology 1989; 124: 549–51.

    Article  PubMed  CAS  Google Scholar 

  39. Pang X-P, Hershman JM, Mirell CJ et al. Impairment of hypothalamic- pituitary-thyroid function in rats treated with human recombinant tumor necrosis factor-a (cachectin). Endocrinology 1989; 125: 76–84.

    Article  PubMed  CAS  Google Scholar 

  40. Imura H, Fukata J-I, Mori T. Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin Endocrinology 1991; 35: 107–15.

    Article  CAS  Google Scholar 

  41. Rivier C, Vale W. Cytokines act within the brain to inhibit luteinizing hormone secretion and ovulation in the rat. Endocrinology 1990; 127: 849–56.

    Article  PubMed  CAS  Google Scholar 

  42. Rivier C. Mechanisms of altered prolactin secretion due to the administration of interleukin–1 p into the brain ventricles of the rat. Neuroendocrinology 1995; 62: 198–206.

    Article  PubMed  CAS  Google Scholar 

  43. Stouthard JML, van der Poll T, Endert E et al. Effects of acute and chronic interleukin–6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab 1994; 79: 1342–46.

    Article  PubMed  CAS  Google Scholar 

  44. Payne LC, Obal F, Opp MR et al. Stimulation and inhibition of growth hormone secretion by interleukin-lß: the involvement of growth hormone- releasing hormone. Neuroendocrinology 1992; 56: 118–23.

    Article  PubMed  CAS  Google Scholar 

  45. Wada Y, Sato M, Niimi M et al. Inhibitory effect of interleukin–1 on growth hormone secretion in conscious male rats. Endocrinology 1995; 136: 3936–41.

    Article  PubMed  CAS  Google Scholar 

  46. Landgraf R, Neumann I, Holsboer F et al. Interleukin-lß stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 1995; 7: 592–98.

    Article  PubMed  CAS  Google Scholar 

  47. van der Poll T, Romijn JA, Endert E et al. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism 1993; 42: 303 - 07.

    Article  PubMed  Google Scholar 

  48. Rivier C, Erickson G. The chronic intracerebroventricular infusion of interleukin-lß alters the activity of the hypothalamic-pituitary-gonadal axis of cycling rats. II. Induction of pseudopregnant-like corpora lutea. Endo-crinology 1993; 133: 2431–36.

    Article  CAS  Google Scholar 

  49. Turnbull A, Rivier C. Brain-periphery connections: do they play a role in mediating the effect of centrally injected interleukin-lß on gonadal function? Neuroimmunomodulation 1996; 2: 224–235.

    Article  Google Scholar 

  50. Rettori V, Belova N, Gimeno M et al. Inhibition of nitric oxide synthase in the hypothalamus blocks the increase in plasma prolactin induced by intraventricular injection of interleukin-la in the rat. Neuroimmunomodulation 1994; 1: 116–20.

    Article  PubMed  CAS  Google Scholar 

  51. Turnbull AV, Dow RC, Hopkins SJ et al. Mechanism of the activation of the pituitary-adrenal axis by tissue injury in the rat. Psycho- neuroendocrinology 1994; 19: 165–78.

    Article  CAS  Google Scholar 

  52. Turnbull AV, Rivier C. CRF, vasopressin and prostaglandins mediate, and nitric oxide restrains, the HPA axis response to acute local inflammation in the rat. Endocrinology 1996; 137: 455–63.

    Article  PubMed  CAS  Google Scholar 

  53. Givalois L, Dornand J, Mekaouche M Et al. Temporal cascade of plasma level surges in ACTH, corticosterone, and cytokines in endotoxin-challenged rats. Am J Physiol 1994; 267:Rl64–70.

    Google Scholar 

  54. Banks WA, Ortiz L, Plotkin SR et al. Human interleukin (IL) -la, murine IL-la and murine IL-Iß are transported from blood to brain in the mouse by a shared saturable transport mechanism. J Pharmacol Exp Ther 1991; 259: 988–96.

    PubMed  CAS  Google Scholar 

  55. Banks WA, Kastin AJ, Gutierrez EG. Penetration of interleukin–6 across the murine blood-brain-barrier. Neurosci Lett 1994; 179: 53–56.

    Article  PubMed  CAS  Google Scholar 

  56. Gutierrez EG, Banks WA, Kastin AJ Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993; 47: 169–176.

    Article  PubMed  CAS  Google Scholar 

  57. Stitt JT. Passage of immunomodulators across the blood-brain barrier. Yale J Biol Med 1990; 63: 121–31.

    PubMed  CAS  Google Scholar 

  58. Hopkins SJ, Rothwell NJ. Cytokines and the Nervous System I: expression and regulation. Trends Neurosci 1995; 18: 83–88.

    Article  PubMed  CAS  Google Scholar 

  59. Ban EM, Haour F, Lenstra R. Brain interleukin–1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine 1992; 4: 48–54.

    Article  PubMed  CAS  Google Scholar 

  60. van Dam A-M, Brouns M, Louisse S et al. Appearance of interleukin–1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Res 1992; 588: 291–96.

    Article  PubMed  Google Scholar 

  61. Gatti S, Bartfai T. Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment—comparison with interleukin–1 family and interleukin–6. Brain Res 1993; 624: 291–94.

    Article  PubMed  CAS  Google Scholar 

  62. Buttini M, Boddeke H. Peripheral lipopolysaccharide stimulation induces interleukin–1 p messenger RNA in rat brain microglial cells. Neuroscience 1995; 65: 523–30.

    Article  PubMed  CAS  Google Scholar 

  63. van Dam A-M, Bauer J, Tilders FJH et al. Endotoxin-induced appearance of immunoreactive interleukin–1 p in ramified microglia in rat brain: a light and electron microscopic study. Neuroscience 1995; 65: 815–26.

    Article  PubMed  Google Scholar 

  64. Hagan P, Poole S, Bristow AF. Endotoxin-stimulated production of rat hypothalamic interleukin–1 p in vivo and in vitro, measured by specific immunoradiometric assay. J Mol Endocrinol 1993; 11: 31–36.

    Article  PubMed  CAS  Google Scholar 

  65. Turnbull AV, Rivier C. Cytokines within the neuroendocrine system. Curr Opinion Endocrinol Diabetes 1996; 3: 149–156.

    Article  CAS  Google Scholar 

  66. Tatsuno I, Somogyvari-Vigh A, Mizuno K et al. Neuropeptide regulation of interleukin–6 production from the pituitary: stimulation by adenylate cyclase activating polypeptide and calcitonin gene-related peptide. Endocrinology 1991; 129: 1797–804.

    Article  PubMed  CAS  Google Scholar 

  67. Judd AM, MacLeod RM. Differetial release of tumor necrosis factor and IL–6 from adrenal zona glomerulosa cells in vitro. Am J Physiol 1995; 268: E114–20.

    PubMed  CAS  Google Scholar 

  68. Hurwitz A, Ricciarelli E, Botero L et al. Endocrine and autocrine-medi- ated regulation of rat ovarian (theca-interstitial) interleukin–1 p gene expression: gonadotropin-dependent preovulatory acquisition. Endocrinology 1991; 129: 3427–29.

    Article  PubMed  CAS  Google Scholar 

  69. Arzt E, Sauer J, Buric R et al. Characterization of interleukin–2 (IL–2) receptor expression and action of IL–1 and IL–6 on normal anterior pituitary cell growth. Endocrine 1995; 3: 113–19.

    Article  PubMed  CAS  Google Scholar 

  70. Webster EL, Tracey DE, De Souza EB. Upregulation of interleukin–1 receptors in mouse AtT–20 pituitary cells following treatment with corticotropin-releasing factor. Endocrinology 1991; 129: 2796–98.

    Article  PubMed  CAS  Google Scholar 

  71. Bristulf J, Bartfai T. Interleukin–1 p and tumor necrosis factor-a stimulate the mRNA expression of interleukin–1 receptors in mouse anterior pituitary AtT–20 cells. Neurosci Lett 1995; 187: 53–56.

    Article  PubMed  CAS  Google Scholar 

  72. Rivier C. Influence of immune signals on the hypothalamic-pituitary axis of the rodent. Front Neuroendocrinol 1995; 16: 151–82.

    Article  PubMed  CAS  Google Scholar 

  73. Dawson TM, Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 1994; 14: 5147–59.

    PubMed  CAS  Google Scholar 

  74. Forstermann U, Gath I, Schwarz P et al. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 1995; 50: 1321–32.

    Article  PubMed  CAS  Google Scholar 

  75. Arevalo R, Sanchez F, Alonso JR et al. NADPH-diaphorase activity in the hypothalamic magnocellular neurosecretory nuclei of the rat. Brain Res Bull 1992; 28: 599–603.

    Article  PubMed  CAS  Google Scholar 

  76. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990; 347: 768–70.

    Article  PubMed  CAS  Google Scholar 

  77. Calka J, Block CH. Relationship of vasopressin with NADPH-diaphorase in the hypothalamo-neurohypophysial system. Brain Res Bull 193; 32: 207–10.

    Google Scholar 

  78. Calza L, Giardino L, Ceccatelli S. NOS mRNA in the paraventricular nucleus of young and aged rats after immobilization stress. Neuroreport 1993; 4: 627–30.

    Article  PubMed  CAS  Google Scholar 

  79. Ceccatelli S, Eriksson M. The effect of lactation on nitric oxide synthase gene expression. Brain Res 1993; 625: 177–79.

    Article  PubMed  CAS  Google Scholar 

  80. Lee S, Barbanel G, Rivier C. Systemic endotoxin increases steady-state gene expression of hypothalamic nitric oxide synthase: comparison with corticotropin-releasing factor and vasopressin gene transcripts. Brain Res 1995; 705: 136–48.

    Article  PubMed  CAS  Google Scholar 

  81. Siaud P, Mekaouche M, Ixart G et al. A subpopulation of corticotropin- releasing hormone neurosecretory cells in the paraventricular nucleus of the hypothalamus also contain NADPH-diaphorase. Neurosci Lett 1994; 170: 51–54.

    Article  PubMed  CAS  Google Scholar 

  82. Torres G, Lee S, Rivier C. Ontogeny of the rat hypothalamic nitric oxide synthase and colocalization with neuropeptides. Mol Cell Neurosci 1993; 4: 155–63.

    Article  PubMed  CAS  Google Scholar 

  83. Villar MJ, Ceccatelli S, Bedecs K et al. Upregulation of nitric oxide synthase and galanin message- associated peptide in hypothalamic magnocellular neurons after hypophysectomy. Immunohistochemical and in situ hybridization studies. Brain Res 1994; 650: 219–28.

    Article  PubMed  CAS  Google Scholar 

  84. Villar MJ, Ceccatelli S, Ronnqvist M et al. Nitric oxide synthase increases in hypothalamic magnocellular neurones after salt loading in the rat. An immunohistochemical and in situ hybridization study. Brain Res 1994; 644: 273–81.

    Article  PubMed  CAS  Google Scholar 

  85. Vincent SR, Kimura H. Histochemical mapping of the nitric oxide synthase in the rat brain. Neuroscience 1992; 46: 755–84.

    Article  PubMed  CAS  Google Scholar 

  86. Bredt DS, Glatt GE, Hwang PM et al. Nitric oxide synthase protein and mRNA are discrely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 1991; 7: 615–24.

    Article  PubMed  CAS  Google Scholar 

  87. Ceccatelli S, Hulting AL, Zhang X et al. Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion. Proc Natl Acad Sci USA 1993; 90: 11292–96.

    Article  PubMed  CAS  Google Scholar 

  88. Ceccatelli S, Lundberg JM, Fahrenkrug J et al. Evidence for the involvement of nitric oxide in the regulation of hypothalamic portal blood flow. Neuroscience 1992; 51: 769–72.

    Article  PubMed  CAS  Google Scholar 

  89. Brunett AL, Ricker DD, Chamness SL et al. Localization of nitric oxide synthase in the reproductive organs of the male rat. Biol Reprod 1995; 52: 1–7.

    Article  Google Scholar 

  90. Iwai N, Hanai K, Tooyama I et al. Regulation of neuronal nitric oxide synthase in rat adrenal medulla. Hypertension 1995; 25: 431–36.

    Article  PubMed  CAS  Google Scholar 

  91. Afework M, Ralevic V, Burnstock G. The intra-adrenal distribution of intrinsic and extrinsic nitrergic nerve fibres in the rat. Neurosci Lett 1995; 190: 109–12.

    Article  PubMed  CAS  Google Scholar 

  92. Rettori V, Belova N, Dees WL et al. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci USA 1993; 90: 10130–34.

    Article  PubMed  CAS  Google Scholar 

  93. Bonavera JJ, Sahu A, Kalra PS et al. Evidence that nitric oxide may mediate the ovarian steroid-induced luteinizing hormone surge: involvement of excitatory amino acids. Endocrinology 1993; 133: 2481–87.

    Article  PubMed  CAS  Google Scholar 

  94. Rettori V, Kamat A, McCann SM. Nitric oxide mediates the stimulation of luteinizing-hormone releasing hormone release induced by glutamic acid in vitro. Brain Res Bull 1994; 33: 501 - 03.

    Article  PubMed  CAS  Google Scholar 

  95. Seilicovich A, Duvilanski BH, Pisera D et al. Nitric oxide inhibits hypothalamic luteinizing hormone releasing hormone relase by releasing y- aminobutyric acid. Proc Natl Acad Sci USA 1995; 92: 3421–24.

    Article  PubMed  CAS  Google Scholar 

  96. Duvilanski BH, Zambruno C, Seilicovich A et al. Role of nitric oxide in control of prolactin release by the adenohypophysis. Proc Natl Acad Sci USA 1995; 92: 170–74.

    Article  PubMed  CAS  Google Scholar 

  97. Bonavera JJ, Sahu A, Kalra PS et al. Evidence in support of nitric oxide (NO) involvement in the cyclic release of prolactin and LH surges. Brain Res 1994; 660: 175–79.

    Article  PubMed  CAS  Google Scholar 

  98. Rivier C, Shen GH. In the rat, endogenous nitric oxide modulates the response of the hypothalamo-pituitary-adrenal axis to interleukin-lp, vasopressin, and oxytocin. J Neurosci 1994; 14: 1985–93.

    PubMed  CAS  Google Scholar 

  99. Rivier C. Endogenous nitric oxide paricipates in the activation of the hypothalamic-pituitary-adrenal axis by noxious stimuli. Endocrine J 1994; 2: 367–73.

    CAS  Google Scholar 

  100. Rivier C. Blockade of nitric oxide formation augments ACTH released by blood-borne interleukin-lp: role of vasopressin, prostaglandins and a–1 adrenergic receptors. Endocrinology 1995; 136: 3597–603.

    Article  PubMed  CAS  Google Scholar 

  101. Costa A, Trainer P, Besser M et al. Nitric oxide modulates the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res 1993; 605: 187–92.

    Article  PubMed  CAS  Google Scholar 

  102. Karanth S, Lyson K, McCann SM. Role of nitric oxide in interleukin 2- induced corticotropin-releasing factor release from incubated hypothalami. Proc Natl Acad Sci USA 1993; 90: 3383–87.

    Article  PubMed  CAS  Google Scholar 

  103. Raber J, Koob GF, Bloom FE. Interleukin–2 (IL–2) induces corticotropin- releasing factor (CRF) release from the amygdala and involves a nitric oxide-mediated signaling; comparison with the hypothalamic response. JPharmacol Exp Ther 1995; 272: 815–24.

    CAS  Google Scholar 

  104. Sandi C, Guaza C. Evidence for a role of nitric oxide in the corticotropin- releasing factor release induced by interleukin–1 (3. Eur J Pharmacol 1995; 274: 17–23.

    Article  PubMed  CAS  Google Scholar 

  105. Coiro V, Volpi R, Chiodera P. Mediation by nitric oxide of TRH-, but not metoclopramide-stimulated TSH secretion in humans. Neuroreport 1995; 6: 1174–76.

    Article  PubMed  CAS  Google Scholar 

  106. Kato M. Involvement of nitric oxide in growth hormone (GH)-releasing hormone-induced GH secretion in rat pituitary cells. Endocrinology 1992; 131: 2133–38.

    Article  PubMed  CAS  Google Scholar 

  107. Rettori V, Belova N, Yu WH et al. Role of nitric oxide in control of growth hormone release in the rat. Neuroimmunomodulation 1994; 1: 195–200.

    Article  PubMed  CAS  Google Scholar 

  108. Summy-Long JY, Bui V, Mantz S et al. Central inhibition of nitric oxide synthase preferentially augments release of oxytocin during dehydration. Neurosci Lett 1993; 152: 190–93.

    Article  PubMed  CAS  Google Scholar 

  109. Yasin S, Costa A, Trainer P et al. Nitric oxide modulates the release of vasopressin from rat hypothalamic explants. Endocrinology 1993; 133: 1466–69.

    Article  PubMed  CAS  Google Scholar 

  110. Yasin SA, Costa A, Hucks D et al. Interleukin-induced vasopressin release is inhibited by L-arginine. Ann NY Acad Sci 1993; 689: 693–95.

    Article  PubMed  CAS  Google Scholar 

  111. Laskin JD, Heck DE, Laskin DL. Multifunctional role of nitric oxide in inflammation. Trends Endocrinol Metabol 1994; 5: 377–82.

    Article  CAS  Google Scholar 

  112. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109–42.

    PubMed  CAS  Google Scholar 

  113. Lee S, Rivier C. Prenatal alcohol exposure alters the hypothalamic-pituitary-adrenal axis response of immature offspring to interleukin–1: is nitric oxide involved? Alcohol. Clin Exp Res 1994; 18: 1242–47.

    Article  CAS  Google Scholar 

  114. Brunetti L, Preziosi P, Ragazzoni E et al. Involvement of nitric oxide in basal and interleukin–1 beta-induced CRF and ACTH release in vitro. Life Sci 1993; 53: 219–22.

    Article  Google Scholar 

  115. Hashimoto K, Nishioka T, Tojo C et al. Nitric oxide plays no role in ACTH release induced by interleukin–1 p, corticotropin-releasing hormone, arginine vasopressin and phorbol myristate acetate in rat pituitary cell cultures Endocrine J 1995; 42: 435–39.

    CAS  Google Scholar 

  116. Sun Y, Rotenburg MO, Maines MD. Developmental expression of heme oxygenase isozymes in rat brain. J Biol Chem 1990; 265: 8212–17.

    PubMed  CAS  Google Scholar 

  117. Verma A, Hirsch DJ, Glatt CE et al. Carbon monoxide: a putative neural messenger. Science 1993; 259: 381–84.

    Article  PubMed  CAS  Google Scholar 

  118. Stevens CF, Wang Y. Reversal of long-term potentiation by inhibitors of heme oxygenase. Nature 1993; 364: 147–49.

    Article  PubMed  CAS  Google Scholar 

  119. Maines MD. Carbon monoxide: an emerging regulator of cGMP in the brain. Mol Cell Neurosci 1993; 4: 389–97.

    Article  PubMed  CAS  Google Scholar 

  120. Pozzoli G, Mancuso C, Mirtella A et al. Carbon monoxide as a novel neuroendocrine modulator: inhibition of stimulated corticotropin-releasing hormone release from acute rat hypothalamic explants. Endocrinology 1994; 135: 2314–17.

    Article  PubMed  CAS  Google Scholar 

  121. Parkes D, Kasckow J, Vale W. Carbon monoxide modulates secretion of corticotropin-releasing factor from rat hypothalamic cell cultures Brain Res 1994; 646: 315–18.

    CAS  Google Scholar 

  122. Larmar CA, Mahesh VB, Brann DW. Regulation of gonadotropin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide? Endocrinology 1996; 137: 790–93.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Turnbull, A.V., Rivier, C. (1996). Cytokine Effects on Neuroendocrine Axes: Influence of Nitric Oxide and Carbon Monoxide. In: Cytokines in the Nervous System. Neuroscience Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9695-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9695-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9697-4

  • Online ISBN: 978-1-4615-9695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics