Skip to main content

Electrode Kinetic and Electrocatalytic Aspects of Electrochemical Energy Conversion

  • Chapter
Electrochemistry in Transition

Abstract

NASA’s Space Programs stimulated the initiation of fuel cell research and development in the late 1950s.(1–7) The types of fuel cells that were focused on in the 1960s for space applications were the ones using solid polymer and alkaline electrolytes. The General Electric Company was responsible for developing the solid polymer electrolyte fuel cells, and United Technologies Corporation (Pratt and Whitney Division) for developing the alkaline fuel cells. The initial difficulties regarding the stability of the proton-conducting membrane, polystyrene sulfonic acid, for the solid polymer electrolyte fuel cells used in the Gemini flights and the excellent performance of the alkaline fuel cells are the reasons for the choice of the latter system as a power source for the Apollo, space shuttle, and other space flights. The fuel cell performance is best with the “pristine” reactants hydrogen and oxygen. These reactants, stored cryogenically, are the logical ones for space flights. In the 1970s, with the invention of a highly stable and conducting solid polymer electrolyte, Nafion, by the Du Pont Company, there was a breakthrough in fuel cell technology using such electrolytes. By the substitution of the polystyrene sulfonic acid with Nafion, General Electric Company showed a significant improvement in the performance of solid polymer electrolyte fuel cells. The Dow Chemical Company has developed a membrane which is more promising than Nafion in respect to conductivity and water management characteristics. These advances make the solid polymer electrolyte fuel cell a strong competitor of the alkaline fuel cell, particularly for the lunar-and Mars-based missions of NASA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Young, Fuel Cells, Vols. 1 and 2, Reinhold, New York (1960 and 1963).

    Google Scholar 

  2. E. W. Justi and A. W. Winsel, Kalte Verbrennung, Franz Steiner Verlag, Weisbaden (1962).

    Google Scholar 

  3. B. S. Baker (ed.), Hydrocarbon Fuel Cell Technology, Academic Press, New York (1965).

    Google Scholar 

  4. K. R. Williams (ed.), An Introduction to Fuel Cells, Elsevier, New York (1966).

    Google Scholar 

  5. H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Cell Batteries, John Wiley & Sons, New York (1968)

    Google Scholar 

  6. C. Berger (ed.), Handbook of Fuel Cell Technology, Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  7. J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  8. S. S. Penner (ed.), Assessment of Research Needs for Advanced Fuel Cells, Energy 11(1/2) (1986).

    Google Scholar 

  9. K. Kinoshita, F. R. McLarnon, and E. J. Cairns, Fuel Cells—A Handbook, Office of Scientific and Technical Information, United States Department of Energy, METC-88/6096 (1988).

    Google Scholar 

  10. A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).

    Google Scholar 

  11. D. G. Lovering, (ed.), Fuel Cells—Grove Anniversary Symposium ’89, Elsevier, London (1990).

    Google Scholar 

  12. S. Srinivasan, E. A. Ticianelli, C. R. Derouin, and A. Redondo, J. Power Sources 22, 359 (1988).

    Article  CAS  Google Scholar 

  13. S. Srinivasan, S. Somasundaram, D. H. Swan, H. Koch, D. J. Manko, M. A. Enayetullah, and A. J. Appleby, Proceedings of Symposium on Fuel Cells (R. E. White and A. J. Appleby, eds.), A.I.Ch.E Meeting, San Francisco, California, Nov. 6–7, 1989.

    Google Scholar 

  14. K. Prater, in Fuel Cells—Grove Anniversary Symposium’89 (D. G. Lovering ed.), Elsevier, London (1990).

    Google Scholar 

  15. K. Kordesch, in: Handbook of Fuel Cell Technology (C. Berger, ed.), pp. 361–424, Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  16. W. Juda, 134th Meeting of the Electrochemical Society, Montreal, Canada, October, 1968.

    Google Scholar 

  17. S. Srinivasan, J. Electrochem. Soc. 136, 41C (1989).

    Article  CAS  Google Scholar 

  18. P. N. Ross, Oxygen Reduction on Supported Pt Alloys and Intermetallic Compounds in Phosphoric Acid, EPRI-EM-1553, Lawrence Berkeley Laboratory, Palo Alto, California (1980).

    Google Scholar 

  19. V. M. Jalan and D. A. Landsman, U.S. Patent 4,186,110 (1980); V. M. Jalan, D. A. Landsman, and J. M. Lee, U.S. Patent 4,192,907 (1980); V. M. Jalan, U.S. Patent 4,202,934 (1980).

    Google Scholar 

  20. V. Jalan, Extended Abstracts, 161st Meeting of the Electrochemical Society, Montreal, Canada, May 9–14, 1982, p. 581.

    Google Scholar 

  21. V. Jalan and E. J. Taylor, J. Electrochem. Soc. 130, 2299–0000 (1983).

    Article  CAS  Google Scholar 

  22. C. J. Maggiore, P. J. Hyde and S. Srinivasan, Extended Abstracts, 161st Meeting of the Electrochemical Society, Montreal, Canada, May 9–14, 1982.

    Google Scholar 

  23. M. T. Paffett, J. G. Berry, and S. Gottesfeld, J. Electrochem. Soc. 135, 1431–0000 (1988).

    Article  CAS  Google Scholar 

  24. D. A. Landsman and F. J. Luczak, U.S. Patent 4,316,944 (1982); U.S. Patent 4,373,014 (1983).

    Google Scholar 

  25. F. J. Luczak and D. A. Landsman, U.S. Patent 4,447,586 (1984).

    Google Scholar 

  26. P. Stonehart and J. P. McDonald, Stability of Acid Fuel Cell Cathode Materials, Final Report, EPRI RP-1200–2, Lawrence Berkeley Laboratory, Palo Alto, California (1981).

    Google Scholar 

  27. M. L. Warshay and P. R. Prokopious, in: Fuel Cells—Grove Anniversary Symposium ’89 (D. G. Lovering, ed.), Elsevier, London (1990).

    Google Scholar 

  28. E. R. Gonzalez, K.-L. Hsueh, and S. Srinivasan, J. Electrochem. Soc. 130, 1–0000 (1983).

    Article  CAS  Google Scholar 

  29. A. J. Appleby and B. S. Baker, J. Electrochem. Soc. 125, 404–0000 (1978).

    Article  CAS  Google Scholar 

  30. B. S. Baker and H. C. Maru, in: Progress in Battery Solar Cells, Vol. 5, JEC Press (1984).

    Google Scholar 

  31. A. J. Appleby, Progress in Batteries and Solar Cells, (H. Shimotake et al., eds.), p. 246, JEC Press, Cleveland, Ohio (1984).

    Google Scholar 

  32. E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochem. Soc. 135, 2209–0000 (1988).

    Article  CAS  Google Scholar 

  33. E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, J. Electroanal. Chem. 251, 275–0000 (1988).

    Article  CAS  Google Scholar 

  34. S. Srinivasan, M. A. Enayetullah, S. Somasundaram, D. H. Swan, D. J. Manko, H. Koch, and A. J. Appleby, Proc. I.E.C.E.C. 24, 1623–0000 (1989).

    Google Scholar 

  35. S. Srinivasan, D. J. Manko, H. Koch, M. A. Enayetullah, and A. J. Appleby, J. Power Sources 29, 367–0000 (1990).

    Article  CAS  Google Scholar 

  36. A. Parthasarathy, C. R. Martin and S. Srinivasan, J. Electrochem. Soc. 138, 916–0000 (1991).

    Article  CAS  Google Scholar 

  37. H. S. Murray and J. R. Huff, Fuel Cell/Battery Hybrid Vehicle Assessment, Los Alamos National Laboratory Report, #LA-10948-MS, UC-96 (1987).

    Google Scholar 

  38. I. D. Raistrick, U.S. Patent 4,876,115 (1989).

    Google Scholar 

  39. L. A. Knerr, E. J. Reid, and F. Solomon, Extended Abstracts, 173rd Meeting of the Electrochemical Society, Atlanta, Georgia, May 15–20, 1988, p. 19.

    Google Scholar 

  40. J. Zagal, P. Bindra, and E. Yeager, J. Electrochem. Soc. 127, 1506–0000 (1980).

    Article  CAS  Google Scholar 

  41. J. A. S. Bett, H. R. Kunz, S. W. Smith, and L. L. Vane Dine, Investigations of Alloy Catalysts and Redox Catalysts for Phosphoric Acid. Electrochemical Systems, FCR-7157f, prepared by International Fuel Cells for Los Alamos National laboratory under Contract #9-X13-D6271-l(1985).

    Google Scholar 

  42. J. A. Shropshire, J. Electroanal Chem. 9, 90–0000 (1965).

    Article  CAS  Google Scholar 

  43. B. D. McNicol, Proceedings of the Workshop on the Electrocatalysis of Fuel Cells (W. E. O’Grady, S. Srinivasan, and R. F. Dudley, eds.), Brookhaven National Laboratory, Upton, New York, May 15–16, 1973, Proceedings Vol. 79–2, pp. 93–113, The Electrochemical Society, Princeton, New Jersey (1978).

    Google Scholar 

  44. M. Watanabe and S. Motoo, J. Electroanal. Chem. 69, 429–0000 (1975).

    Google Scholar 

  45. M. Watanabe, N. Furuya, and S. Motoo, J. Electroanal. Chem. 191, 367–0000 (1985).

    Article  CAS  Google Scholar 

  46. R. Adzic, W. E. O’Grady, and S. Srinivasan, J. Electrochem. Soc. 128, 913–0000 (1981).

    Google Scholar 

  47. J. Wang, H. Nakajima, and H. Kita, J. Electroanal. Chem. 250, 213–0000 (1988).

    Article  CAS  Google Scholar 

  48. A. J. Appleby, U.S. Patent 4,610,938 (1986).

    Google Scholar 

  49. E. Yeager, M. Razak, A. Razak, and E. Yeager, J. Electrochem. Soc. 136, 385–0000 (1989).

    Article  Google Scholar 

  50. S. Srinivasan, C. R. Derouin and I. D. Raistrick, Extended abstracts, 169th Meeting of the Electrochemical Society, Boston, Massachusetts, May 4–9, 1986, Abstract 537.

    Google Scholar 

  51. A. J. Appleby, personal communication.

    Google Scholar 

  52. A. C. C. Tseung and K. L. K. Yeung, J. Electrochem. Soc. 125, 1003–0000 (1978).

    Article  Google Scholar 

  53. M. Razaq, A. Razaq, E. Yeager, D. D. DesMarteau, and S. Singh, J. Appl. Electrochem. 17, 1057 (1987).

    Article  CAS  Google Scholar 

  54. F. Weigel and G. Hoffmann, J. Less-Common Met. 44, 99–0000 (1976).

    Article  CAS  Google Scholar 

  55. O. Nakamura, T. Kokama, I. Ogino, and Y. Miyake, Chem. Lett. 1979, 17.

    Google Scholar 

  56. J. L. Briant and G. C. Farrington, Extended Abstracts, Oct. 15–20, 1978.

    Google Scholar 

  57. G. C. Farrington, J. L. Briant, M. W. Breiter, W. L. Roth, J. Solid State Chem. 24, 311–0000 (1978).

    Article  CAS  Google Scholar 

  58. A. J. Appleby, J. Power Sources 22, 377–0000 (1988).

    Article  CAS  Google Scholar 

  59. R. S. Yeo, J. Orehotsky, W. Visscher, and S. Srinivasan, J. Electrochem. Soc. 128, 1900–0000 (1981).

    Article  CAS  Google Scholar 

  60. A. O. Isenberg, Solid State Ionics 3–4, 431–0000 (1981).

    Article  Google Scholar 

  61. S. S. Liou and W. L. Worrell, Proceedings of the First International Symposium on Solid Oxide Fuel Cells (S. C. Singhai, ed.), Proceedings Vol. 89–11, pp. 81–89, The Electrochemical Society, Pennington, New Jersey (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Srinivasan, S. (1992). Electrode Kinetic and Electrocatalytic Aspects of Electrochemical Energy Conversion. In: Murphy, O.J., Srinivasan, S., Conway, B.E. (eds) Electrochemistry in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9576-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9576-2_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9578-6

  • Online ISBN: 978-1-4615-9576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics