Skip to main content

Development and Molecular Biology of Mammalian Pyruvate Dehydrogenase Complex

  • Chapter
Endocrine and Biochemical Development of the Fetus and Neonate

Part of the book series: Reproductive Biology ((RBIO))

  • 44 Accesses

Abstract

Glucose is the major fuel for oxidative metabolism in the developing fetus. A continuous supply of glucose and other nutrients from the maternal circulation to the fetus via the placenta is essential for normal fetal development. The initial metabolism of glucose to pyruvate occurs by the glycolytic pathway; further oxidation of pyruvate to C02 takes place through the tricarboxylic acid cycle in mitochondria. These two pathways are functionally linked by the pyruvate dehydrogenase complex (PDC) in the mitochondria. The level of oxidative metabolism of pyruvate continually increases in different tissues beginning in the early postnatal period, and gradually reaches the maximal levels observed in tissues from adults. In this chapter, we will discuss the structure, function and regulation of mammalian PDC with special emphasis on recent advances in the cloning of several components of the complex. Additionally, the expression of PDC activity in differentiating cultured cells and developing animals will be discussed. The importance of normal pyruvate oxidation during early mammalian development will be underlined by discussing the effects of inborn errors of PDC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.J. Reed, Multienzyme complexes, Acc.Chem.Res., 7: 40 (1974).

    Article  CAS  Google Scholar 

  2. R.M. Oliver and L.J. Reed, Multienzyme complexes, in: &#0x201C;Electron Microscopy of Proteins”, J.R. Harris, ed., Academic Press, London, pp. 1 (1982).

    Google Scholar 

  3. L.J. Reed and R.O. Oliver, Structure-function relationships in pyruvate and α-ketoglutarate dehydrogenase complexes, Adv. Exp. Med.Biol., 148: 231 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. O.H. Wieland, The mammalian pyruvate dehydrogenase complex: structure and regulation, Rev. Physiol.Biochem.Pharmacol. 96: 123 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. S.J. Yeaman, The mammalian 2-oxoacid dehydrogenases: a complex family, TIBS. 11: 293 (1986).

    CAS  Google Scholar 

  6. O. de Marcucci and J.G. Lindsay, Component X: an immunologically distinct polypeptide associated with mammalian pyruvate dehydrogenase multi-enzyme complex, Eur.J.Biochem., 149: 641 (1985).

    Article  PubMed  Google Scholar 

  7. J.M. Jilka, M. Rahmatullah, M. Kazemi and T.E. Roche, Properties of a newly characterized protein of the bovine kidney pyruvate dehydrogenase complex, J.Biol.Chem., 261: 1858 (1986).

    PubMed  CAS  Google Scholar 

  8. S.J. Yeaman, E.T. Hutcheson, T.E. Roche, F.H. Pettit, J.R. Brown, L.J. Reed, D.C. Watson and G.H. Dixon, Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart, Biochem., 17: 2364 (1978).

    Article  CAS  Google Scholar 

  9. M. Rahmatullah, J.M. Jilka, G.A. Radke and T.E. Roche, Properties of the pyruvate dehydrogenase kinase bound to and separated from the dihydrolipoyl transacetylase-protein X subcomplex and evidence for binding of the kinase to protein X, J.Biol.Chem., 261: 6515 (1986).

    PubMed  CAS  Google Scholar 

  10. R.M. Denton and A.P. Halestrap, Regulation of pyruvate metabolism in mammalian tissues, in: “Essays in Biochemistry”, P.N. Campbell and R.D. Marshall, eds., 15: 37 (1979).

    Google Scholar 

  11. H. H. M. Dahl, S.M. Hunt, W.M. Hutchison and G.K. Brown, The human pyruvate dehydrogenase complex. Isolation of cDNA clones for the Ela subunit, sequence analysis, and characterization of the mRNA, J.Biol.Chem., 262: 7398 (1987).

    PubMed  CAS  Google Scholar 

  12. K. Koike, S. Ohta, Y. Urata, Y. Kagawa and M. Koike, Cloning and sequencing of cDNAs encoding the a and β subunits of human pyruvate dehydrogenase, Proc.Nat1.Acad.Sci.USA. 85: 41 (1988)

    Article  CAS  Google Scholar 

  13. L. DeMeirleir, N. MacKay, A.M.L.H. Wan and B.H. Robinson,Isolation of a full-length complementary DNA coding for human Ela subunit of the pyruvate dehydrogenase complex.J.Biol.Chem. 263: 1991 (1988).

    PubMed  Google Scholar 

  14. L. Ho, A.A. Javed, R.A. Pepin, T.J. Thekkumkara, C. Raefsky, J.E. Mole, A.M. Callendo, M.S. Kwon, D.S. Kerr and M.S. Patel, Identification of a cDNA clone for the β-subunit of the pyruvate dehydrogenase component of human pyruvate dehydrogenase complex, Biochem.Biophys.Res.Comm., 150: 904 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. I.D. Wexler, D.S. Kerr, L. Ho, M. M. Lusk, R.A. Pepin, A. A. Javed, J. E. Mole, B. W. Jesse, T.J. Thekkumkara, G. Pons and M.S. Patel, Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency, Proc.Nat 1.Acad.Sei.USA. 85: 7336 (1988).

    Article  CAS  Google Scholar 

  16. S. Matuda, S. Matuo, K. Nakano and T. Saheki, Molecular cloning ofcDNA for rat liver lipoate acetyltransferase, a component of pyruvate dehydrogenase complex, Biochem.Biophys. Res.Comm., 142: 953 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. T. J. Thekkumkara, B.W. Jesse, L. Ho, C. Raefsky, R.A. Pepin, A.A. Javed, G. Pons and M. S. Patel, Isolation of a cDNA clone for the dihydrolipo-amide acetyltransferase component of the human liver pyruvate dehydrogenase complex, Biochem.Biophys.Res. Comm., 145: 903 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. T. J. Thekkumkara, L. Ho, I.D. Wexler, G. Pons, T.C. Liu and M.S. Patel, Nucleotide sequence of a cDNA for the dihydrolipoamide acetyl-transferase component of human pyruvate dehydrogenase complex, FEBS Letters, 240: 45 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. R. L. Coppel, L. J. McNeilage, C.D. Surh, J.Van de Water, T. W. Spithill, S. Whittingham and M.E. Gershwin, Primary structure of human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydro-lipoamide acetyltransferase, Proc. Natl. Acad. Sei.USA 85: 7317 (1988).

    Article  CAS  Google Scholar 

  20. M.E. Gershwin, I.R. Mackay, A. Sturgess and R.L. Coppel, Identification and specificity of a cDNA encoding the 70-KD mitochondrial antigen recognized in primary biliary cirrhosis, J. Immun.,138: 3525 (1987).

    PubMed  CAS  Google Scholar 

  21. G. Otulakowski and B.H. Robinson, Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase, J.Biol.Chem. 262: 17313 (1987).

    PubMed  CAS  Google Scholar 

  22. G. Pons, C. Raefsky-Estrin, D.J. Carothers, R.A. Pepin, A.A. Javed, B.W. Jesse, M.K. Ganapathi, D. Samols and M.S. Patel, Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component ofhuman α-ketoacid dehydrogenase complexes, Proc. Nat 1. Acad.Sci.USA 85: 1422 (1988).

    Article  CAS  Google Scholar 

  23. P.H. Sugden, A. L. Kerbey, P. J. Randle, C.A. Waller and K. B.M. Reid, Amino acid sequences around the sites of phosphorylation in the pig heart pyruvate dehydrogenase complex, Biochem. J., 181: 419 (1979).

    PubMed  CAS  Google Scholar 

  24. D.M. Bleile, M.L. Hackert, F.H. Pettit and L.J. Reed, Subunit structure of dihydrolipoyl transacetylase component of pyruvate dehydrogenase complex from bovine heart, J.Biol.Chem. 256: 514 (1981).

    PubMed  CAS  Google Scholar 

  25. T. J. Thekkumkara, G. Pons, S. Mitroo, J.E. Jentoft and M. S. Patel, Molecular biology of human pyruvate dehydrogenase complex: structural aspects in the E2 and E3 components, Annals.NY.Acad.Sei. 573: 113 (1989).

    Article  CAS  Google Scholar 

  26. J. R. Guest, H.M. Lewis, L.D. Graham, L.C. Packman and R. N. Perham, Genetic reconstruction and functional analysis of the repeating lipoyl domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli, J.Mol.Biol., 185: 743 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. D. J. Carothers, G. Pons and M.S. Patel, Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases, Arch. Biochem.Biophys., 268: 409 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. G.E. Schulz, R.H. Schirmer, W. Sachsenheimer and E.F. Pai, The structure of the flavoenzyme glutathione reductase, Nature, 273: 120 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. S.E. Marshall, J. G. McCormack and R.M. Denton, Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epidydimal adipose tissue, Biochem. J., 218: 249 (1984).

    PubMed  CAS  Google Scholar 

  30. Z. Damuni, J.S. Humphreys and L.J. Reed, Stimulation of pyruvate dehydrogenase activity by polyamines, Biochem.Biophys.Res.Commun., 124: 95 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. W.A. Hughes and R. M. Denton, Incorporation of Pi into pyruvate dehydrogenase phosphate in mitochondria from control and insulin-treated adipose tissue, Nature 264: 471 (1976).

    Article  PubMed  CAS  Google Scholar 

  32. R.M. Denton, W.A. Hughes, B.J. Bridges, R.W. Brownsey, J.G. McCormack and D. Stansbie, Regulation of mammalian pyruvate dehydrogenase by hormone, in: “Hormone and Cell Regulation”, vol. 2, J. Dumont and J. Nunez, eds.,Elsevier/North Holland Biomedical Press, Amsterdam, pp. 191 (1978).

    Google Scholar 

  33. I. Paetzke-Brunner, H. Schon and O.H. Wieland, Insulin activates pyruvate dehydrogenase by lowering the mitochondrial acetyl-CoA/CoA ratio as evidenced by digitonin fractionation of isolated fat cells, FEBS Lett. 93: 307 (1978).

    Article  PubMed  CAS  Google Scholar 

  34. L. Jarret and J.R. Seals, Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle, Science, 206: 1407 (1979).

    Article  Google Scholar 

  35. S. Suzuki, T. Toyota, H. Suzuki and Y. Goto, Partial purification from human mononuclear cells and placenta plasma membrane of an insulin mediator which stimulates pyruvate dehydrogenase and supresses glucose-6-phosphatase, Arch.Biochem.Biophys. 235: 418 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. S.L. Macaulay and L. Jarret, Insulin mediator causes dephosphorylation of the a subunit of pyruvate dehydrogenase by stimulating phosphatase activity, Arch.Biochem.Biophys. 237: 142 (1985).

    Article  PubMed  CAS  Google Scholar 

  37. A.R. Saltiel, Insulin generates an enzyme modulator from hepatic plasma membranes: regulation of adenosine 3’, 5’-monophosphate phosphodiesterase, pyruvate dehydrogenase, and adenylate cyclase, Endocrinology. 120: 967 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. O. Wieland, E. Siess, F.H. Schulze-Wethmar, H.G.V. Funcke and B. Winton, Active and inactive forms of pyruvate dehydrogenase in rat heart and kidney: effect of diabetes, fasting and refeeding on pyruvate dehydrogenase interconversion, Arch.Biochem.Biophys., 143: 593 (1971).

    Article  PubMed  CAS  Google Scholar 

  39. P. J. Randle, P.H. Sudgen, A.L. Kerbey, P.M. Radcliffe and N.J. Hutson, Regulation of pyruvate oxidation and the conservation of glucose, Biochem.Soc.Sympos. 43: 47 (1978).

    CAS  Google Scholar 

  40. O.H. Wieland, C. Patzelt and G. Loffler, Active and inactive forms of pyruvate dehydrogenase in rat liver, Eur. J. Biochem., 26: 426 (1972).

    Article  PubMed  CAS  Google Scholar 

  41. C. Patzelt, G. Loffler and O. Wieland, Interconversion of pyruvate dehydrogenase in the isolated perfused rat liver, Eur. J. Biochem., 33: 117 (1973).

    Article  PubMed  CAS  Google Scholar 

  42. T.H. Claus and S.J. Pilkis, Effect of dichloroacetate and glucagon on the incorporation of labeled substrates into glucose and on pyruvate dehydrogenase in hepatocytes from fed and starved rats. Arch. Biochem.Biophys., 182: 52 (1977).

    Article  PubMed  CAS  Google Scholar 

  43. D. A. Hems, J.G. McCormack and R.M. Denton, Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin, Biochem. J., 176: 627 (1978).

    PubMed  CAS  Google Scholar 

  44. R.M. Denton and J.G. McCormack, Ca transport by mammalian mitochondria and its role in hormone action, Am.J.Physiol., 249:E543 (1985).

    PubMed  CAS  Google Scholar 

  45. R. Moreno-Sanchez and R.G. Hansford, Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca concentration. Biochem. J., 256: 403 (1988).

    PubMed  CAS  Google Scholar 

  46. M.B. Weinberg and M.F. Utter, Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase, J.Biol.Chem., 254: 9492 (1979).

    PubMed  CAS  Google Scholar 

  47. P.J. Randle, P.J. England and R.M. Denton, Control of the tricarboxylate cycle and its interaction with glycolysis during acetate utilization in rat heart, Biochem. J., 117: 677 (1970).

    PubMed  CAS  Google Scholar 

  48. A.L. Kerbey and P.J. Randle, Thermolabile factor accelerates pyruvate dehydrogenase kinase reaction in heart mitochondria of starved or alloxan diabetic rats, FEBS Letters. 127: 188 (1981).

    Article  PubMed  CAS  Google Scholar 

  49. C-W.C. Hu, M. F. Utter and M.S. Patel, Induction of pyruvate dehydrogenase in 3T3-L1 during differentiation, J.Biol.Chem., 258: 2315 (1983).

    PubMed  CAS  Google Scholar 

  50. D.T. Chuang, C.-W.C. Hu and M. S. Patel, Induction of the branched-chain 2-oxo acid dehydrogenase complex in 3T3-L1 adipocytes during differentiation, Biochem. J. 214: 177 (1983).

    PubMed  CAS  Google Scholar 

  51. D. J. Carothers, G. Pons and M. S. Patel, Induction of dihydrolipoamide dehydrogenase in 3T3-L1 cells during differentiation, Biochem. J., 249: 897 (1988).

    PubMed  CAS  Google Scholar 

  52. M. S. Patel, C. Raefsky, C.-W.C. Hu and L. Ho, Modulation by dexamethasone of the pyruvate dehydrogenase complex activity in 3T3-L1 adipocytes, Biochem. J. 226: 607 (1985).

    PubMed  CAS  Google Scholar 

  53. S.E. Knowles and F.J. Ballard, Pyruvate dehydrogenase activity in rat liver during development. Biol. Neonate, 24: 41 (1974).

    Article  PubMed  CAS  Google Scholar 

  54. C. I. Chitra, J.M. Cuezva and M. S. Patel, Changes in the activity of’ active’ pyruvate dehydrogenase complex in the newborn of normal and diabetic rats, Diabetologia, 28: 148 (1985).

    PubMed  CAS  Google Scholar 

  55. E. Serrano, A.M. Luis, P. Encabo, A. Alconada, L. Ho, M. S. Patel and J.M. Cuezva, Rapid postnatal induction of the pyruvate dehydrogenase complex in rat liver mitochondria, Annals.NY. Acad. Sei., 573: 412 (1989).

    Article  Google Scholar 

  56. J.M. Medina, J.M. Cuezva and F. Mayor. Non-gluconeogenic fate of lactate during the early neonatal period in the rat, FEBS Lett., 114: 132 (1980).

    Article  PubMed  CAS  Google Scholar 

  57. J.M. Cuezva, E.S. Burkett, D.S. Kerr, H.M. Rodman and M. S. Patel, The newborn of diabetic rats, I. Hormonal and metabolic changes in the postnatal period, Pediatr.Res., 16: 632 (1982).

    Article  PubMed  CAS  Google Scholar 

  58. J.E. Cremer and H. M. Teal, The activity of pyruvate dehydrogenase in rat brain during postnatal development, FEBS Lett. 39: 17 (1974).

    Article  PubMed  CAS  Google Scholar 

  59. J.M. Land, R. F.G. Booth, R. Berger and J.B. Clark, Development of mitochondrial energy metabolism in rat brain, Biochem. J. 164: 339 (1977).

    PubMed  CAS  Google Scholar 

  60. G. D.A. Malloch, L. A. Munday, M.S. Olsen and J.B. Clark, Comparative development of the pyruvate dehydrogenase complex and citrate synthase in rat brain mitochondria, Biochem. J., 238: 729 (1986).

    PubMed  CAS  Google Scholar 

  61. R. F. Butterworth and J.-F. Giguere, Pyruvate dehydrogenase activity in regions of the rat brain during postnatal development, J. Neurochem. 43: 280 (1984).

    Article  PubMed  CAS  Google Scholar 

  62. T.A. Milner, C. Aoki, K.-F. R. Sheu, J.P. Blass and V.M. Pikel, Light microscopic immunocytochemical localization of pyruvate dehydrogenase complex in rat brain: topological distribution and relation to cholinergic and catecho1aminergic nuclei, J. Neurosci., 7: 3171 (1987).

    PubMed  CAS  Google Scholar 

  63. D.G. Morgan and A. Routtenberg, Brain pyruvate dehydrogenase: phosphorylation and enzyme activity altered by a training experience, Science. 214: 470 (1981).

    Article  PubMed  CAS  Google Scholar 

  64. H.G. Coore and B. Field, Properties of pyruvate dehydrogenase of rat mammary tissue and its changes during pregnancy, lactation and weaning, Biochem. J. 142: 87 (1974).

    PubMed  CAS  Google Scholar 

  65. J.P. Blass, Inborn errors of pyruvate metabolism, in.: “The Metabolic Basis of Inherited Disease”, Fifth Edition, J.B. Stanbury, J.B. Wyngaarden, D.S. Fredickson, J.L. Goldstein, and M.S. Brown, eds., McGraw-Hill Book Co., New York, pp. 193 (1983).

    Google Scholar 

  66. B.H. Robinson, Inborn errors of metabolism leading to lactic acidemia, TIBS 151 (1982).

    Google Scholar 

  67. R. F. Butterworth, Pyruvate dehydrogenase deficiency disorders, in: “Cerebral Energy Metabolism and Metabolic Encephalopathy”, D.W. McCandless, ed., Plenum Pub. Corp. pp. 121 (1985).

    Google Scholar 

  68. B.H. Robinson, Cell culture studies on patients with mitochondrial diseases: molecular defects in pyruvate dehydrogenase. J.Bioenergetics Biomembranes, 20: 313–323 (1988).

    Article  CAS  Google Scholar 

  69. L.Ho,I.D. Wexler, D.S. Kerr and M. S. Patel, Genetic defects in human pyruvate dehydrogenase, Annals NY Acad.Sei. 573: 347 (1989).

    Article  Google Scholar 

  70. B.H. Robinson, H. MacMilan, R. Petrova-Benedict and W.G. Sherwood. Variable clinical presentation in patients with defective El component of pyruvate dehydrogenase complex. J. Pediatr. 111: 525 (1987).

    Article  PubMed  CAS  Google Scholar 

  71. B.H. Robinson, J. Tailor and W.G. Sherwood, Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and α-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis, Pediatr.Res., 11: 1198 (1977).

    Article  PubMed  CAS  Google Scholar 

  72. R. Matalon, D.A. Stumpf, K. Michels, R.D. Hart, J. K. Parks and S. I. Goodman, Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid, J.Pediat. 104: 65 (1984).

    Article  PubMed  CAS  Google Scholar 

  73. Y. Sakaguchi, M. Yoshino, S. Aramaki, I. Yoshido, F. Yamashita, T. Kuhara, I. Matsumoto, and T. Hayashi, Dihydrolipoyl dehydrogenase deficiency: a therapeutic trial with branched-chain amino acid restriction, Eur. J. Pediatr., 145: 271 (1986).

    Article  PubMed  CAS  Google Scholar 

  74. K.-F.R. Sheu, C.-W. C. Hu and M.F. Utter, Pyruvate dehydrogenase complex activity in normal and deficient fibroblasts, J.Clin.Invest. 67: 1463 (1981).

    Article  PubMed  CAS  Google Scholar 

  75. L. Ho, C.-W.C. Hu, S. Packman and M. S. Patel, Deficiency of the pyruvate dehydrogenase component in pyruvate dehydrogenase complex-deficient human fibroblasts, J.Clin.Invest.. 78: 844 (1986).

    Article  PubMed  CAS  Google Scholar 

  76. D.S. Kerr, L. Ho, C.M. Berlin, K.F. Lanoue, J. Towfighi, C.L. Hoppel, M. M. Lusk, CM. Gondek and M. S. Patel, Systemic deficiency of the first component of the pyruvate dehydrogenase complex, Pediatr.Res., 22: 312 (1987).

    Article  PubMed  CAS  Google Scholar 

  77. D.S. Kerr, S.A. Berry, M.M. Lusk, L. Ho and M.S. Patel, A deficiency of both subunits of pyruvate dehydrogenase which is not expressed in fibroblasts, Pediatr. Res., 24: 95 (1988).

    Article  PubMed  CAS  Google Scholar 

  78. C.A. Wicking, R.D. Scholem, S.M. Hunt and G.K. Brown, Immunochemical analysis of normal and mutant forms of human pyruvate dehydrogenase, Biochem. J., 239: 89 (1986).

    PubMed  CAS  Google Scholar 

  79. N. McKay, R. Petrova-Benedict, J. Thoene, B. Bergen, W. Wilson and B. Robinson, Lacticacidaemia due to pyruvate dehydrogenase deficiency, with evidence of protein polymorphism in the α-subunit of the enzyme, Eur.J. Pediatr., 144: 445 (1986).

    Article  PubMed  CAS  Google Scholar 

  80. G.K. Brown, R.D. Scholem, S.M. Hunt, J.R. Harrison and A. C. Pollard, Hyperammonaemia and lactic acidosis in a patient with pyruvate dehydrogenase deficiency, J.Inner.Metab.Dis., 10: 359 (1987).

    Article  CAS  Google Scholar 

  81. A. Kitano, I. Akaboshi, F. Endo, I. Matsuda, Y. Okano, Y. Hase, Y. Nagao, S. Kamoshita, S. Miyabayashi and K. Narisawa, Immunochemical evidence of pyruvate dehydrogenase (El) deficiency, J. Inner.Metab.Dis., 11: 329 (1988).

    Article  CAS  Google Scholar 

  82. M.A. Birch-Machin, I.M. Shepherd, M. Solomon, S.J. Yeaman, D. Gardner-Medwin, H.S.A. Sherratt, J.G. Lindsay, A. Ansley-Green and D.M. Turnbuli, Fatal lactic acidosis due to deficiency of El component of the pyruvate dehydrogenase complex, J.Inner.Metab.Dis., 11: 207 (1988).

    Article  CAS  Google Scholar 

  83. Y. Kuroda, M. Ito, K. Toshima, E. Takeda, E. Naito, T.J. Hwang, T. Hashimoto, M. Miyao, M. Masuda, K. Yamashita, T. Adachi, Y. Suzuki and K. Nishiyama, Treatment of chronic congenital lactic acidosis by oral administration of dichloroacetate, J.Inner.Metab.Dis., 9: 244 (1986).

    Article  CAS  Google Scholar 

  84. S. Sorbi, E.P. Bird and J.P. Blass, Pecreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain, Ann.Neurol., 13: 72 (1983).

    Article  PubMed  CAS  Google Scholar 

  85. K.-F.R. Sheu, Y.-T. Kim, J.P. Blass and M.E. Weksler, An immunological study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain, Ann.Neurol., 17: 444 (1985).

    Article  PubMed  CAS  Google Scholar 

  86. I. Ghadiminejad and H. Baum, Evidence for the cell-surface localization of antigens cross-reacting with the “mitochondrial antibodies” of primary biliary cirrhosis, Hepatology, 7: 743 (1987).

    Article  PubMed  CAS  Google Scholar 

  87. M.E. Gershwin, R.L. Coppel and I.R. Mackay, Primary biliary cirrhosis, and mitochondrial autoantigens—Insights from molecular biology, Hepatology. 8: 147 (1988).

    Article  PubMed  CAS  Google Scholar 

  88. S.J. Yeaman, S. P. M. Fussey, P. J. Panner, O.F.W. James, P.J. Mutimer and M. F. Bassendine, Primary biliary cirrhosis: Identification of two major M2 mitochondrial autoantigens, Lancet i: 1067 (1988).

    Google Scholar 

  89. S. P.M. Fussey, J. R. Guest, O. F.W. James, M. F. Bassendine and S.J. Yeaman, Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis, Proc.Nat 1.Acad. Sci. USA. 85: 8654 (1988).

    Article  CAS  Google Scholar 

  90. J. Van de Water, M.E. Gershwin, P. Leung, A. Ansari and R.L. Coppel, The autoepitope of the 74-KD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydro-lipoamide acetyltransferase, J.Exp.Med., 167: 1791 (1988).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Patel, M.S., Ho, L., Carothers, D.J. (1990). Development and Molecular Biology of Mammalian Pyruvate Dehydrogenase Complex. In: Cuezva, J.M., Pascual-Leone, A.M., Patel, M.S. (eds) Endocrine and Biochemical Development of the Fetus and Neonate. Reproductive Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9567-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9567-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9569-4

  • Online ISBN: 978-1-4615-9567-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics