Advertisement

Introduction to String Field Theory

  • Joseph Lykken
  • Stuart Raby

Abstract

We propose an action for an interacting closed bosonic string. Our formalism relies heavily on ideas discussed by Witten for the open bosonic string. We also obtain the gauge fixed quantum action for the fully interacting open bosonic string.

Keywords

Open String Closed String Bosonic String Ghost Number String Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Siegel, Phys. Lett. 151B, 391; 151B, 396 (1985).ADSGoogle Scholar
  2. [2]
    W. Siegel and B. Zwiebach, Nucl. Phys. B263, 105 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, “Non-commutative Geometry and String Field Theory”, Princeton preprint (1985).Google Scholar
  4. [4]
    T. Banks and M.E. Peskin, Nucl. Phys. B264, 513 (1986).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Neveu, H. Nicolai, and P. West, Nucl. Phys. B264, 573 (1986);MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    A. Neveu, H. Nicolai, and P. West, Phys. Lett. 167B, 307 (1986).MathSciNetADSGoogle Scholar
  7. [6]
    N. Ohta, Phys. Rev. Lett 56, 440 (1986).MathSciNetADSCrossRefGoogle Scholar
  8. [7]
    S.B. Giddings, “The Veneziano Amplitude from Interacting String Field Theory”, Princeton University preprint (1986).Google Scholar
  9. [8]
    N-P Chang, H-Y Guo, Z. Qiu and K. Wu, “Interacting String Field Theory and Chern-Simons Form”, City College preprint CCNY-HEP-86/5 (1986).Google Scholar
  10. [9]
    A. Jevicki, “Covariant String Theory Feynman Amplitudes”, CERN preprint CERN-TH-4341/85 (1985).Google Scholar
  11. [10]
    H. Aratyn and A.H. Zimerman, “Ghosts and the Physical Modes in the Covariant Free String Field Theory”, Hebrew University preprint RIP-85–9 (1985); “Gauge Invariance of the Bosonic Free Field String Theory”, Hebrew University preprint Print-85–874 (1985).Google Scholar
  12. [11]
    H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, “Manifestly Covariant Field Theory of Interacting String 2.”, Kyoto University preprint KUNS-814 (1985); “Manifestly Covariant Field Theory of Interacting String”, Kyoto University preprint RIFP-637 (1985).Google Scholar
  13. [12]
    B. Zwiebach, Gauge Invariant String Actions, MIT preprint MIT-CPT-1308 (1985).Google Scholar
  14. [13]
    T. Banks, M.E. Peskin, CR. Preitschopf, D. Friedan and E. Martinec, “All Free String Theories are Theories of Forms”, SLAC preprint SLAC-PUB-3853 (1985).Google Scholar
  15. [14]
    D. Friedan, Phys. Lett. 162B, 102 (1985); “String Field Theory”, Chicago University preprint EFI85–27 (1985).MathSciNetADSGoogle Scholar
  16. [15]
    P. Ramond, “A Pedestrian Approach to Covariant String Theory”, University of Florida preprint UFTP-85–18 (1985).Google Scholar
  17. [16]
    M. Kaku, “Introduction to the Field Theory of Strings”, City College preprint CCNY-HEP-85–11 (1985); “Supergauge Field Theory of Covariant Heterotic Strings”, Osaka University preprint OU-HET-79 (1985);Google Scholar
  18. [16]
    M. Kaku, Phys. Lett. 162B, 97 (1985).MathSciNetADSGoogle Scholar
  19. [17]
    M. Kaku and J. Lykken, “Supergauge Field Theory of Superstrings”, City College preprint Print-85–412 (1985).Google Scholar
  20. [18]
    K. Itoh, T. Kugo, H. Kunitomo and H. Ooguri, “Gauge Invariant Local Action of String Field from BRS Formalism”, Kyoto University preprint KUNS 800 HE(TH) 85/04 (1985).Google Scholar
  21. [19]
    J.-L. Gervais, “Group Theoretic Approach to the String Field Theory Action”, Ecole Normale Superieure preprint LPTENS 85/35 (1985).Google Scholar
  22. [20]
    K. Bardakci, “Covariant Gauge Theory of Strings”, Berkeley preprint UCB-PTH-85/33 (1985).Google Scholar
  23. [21]
    S. Raby, R. Slansky and G. West, “Toward a Covariant String Theory”, Los Alamos preprint LA-UR-85–3794 (1985).Google Scholar
  24. [22]
    A. Cohen, G. Moore and J. Polchinski, “An Invariant String Propagator”, University of Texas preprint UTTG-26–85 (1985); “An Off-shell Propagator for String Theory”, Harvard University preprint HUTP-85/A058 (1985).Google Scholar
  25. [23]
    A. A. Tseytlin, “Covariant String Field Theory and Effective Action”,Lebedev Institute preprint LEBEDEV-85–265 (1985).Google Scholar
  26. [24]
    A. Neveu and P.C. West, “The Interacting Gauge Covariant Bosonic String”, CERN preprint CERN-TH-4315/85 (1985).Google Scholar
  27. [25]
    M.A. Awada, “The Gauge Covariant Formulation of Interacting Strings and Super-strings”, Cambridge University preprint Print-85–0937 (1985).Google Scholar
  28. [26]
    D. Pfeffer, P. Ramond and V. Rogers, “Gauge Invariant Field Theory of Free Strings”, University of Florida preprint UFTP-85–19 (1985).Google Scholar
  29. [27]
    D. Friedan, E. Martinec and S. Shenker, “Conformai Invariance, Supersymmetry and String Theory”, Chicago University preprint Print-86–0024 (1985);Google Scholar
  30. [27a]
    D. Friedan, E. Martinec and S. Shenker, Phys. Lett. 160B, 55 (1985).MathSciNetADSGoogle Scholar
  31. [28]
    M.E. Peskin and C.B. Thorn, “Equivalence of the Light Cone Formulation and the Gauge Invariant Formulation of String Dynamics”, SLAC preprint SLAC-PUB-3801 (1985).Google Scholar
  32. [29]
    A. Connes, “Introduction to Non-Commutative Differential Geometry”, “The Chern Character in K Homology”, IHES preprints (1982), to appear in IHES Publication.Google Scholar
  33. [30]
    C. Becchi, A. Rouet and R. Stora, Phys. Lett. 52B, 344 (1974); I.V. Tyutin, “Gauge Invariance in Field Theory and in Statistical Mechanics in the Operator Formalism”, Lebedev preprint FIAN No. 39 (1975).ADSGoogle Scholar
  34. [31]
    E.S. Fradkin and G.A. Vilkovisky, Phys. Lett. 55B, 224 (1975).MathSciNetADSGoogle Scholar
  35. [32]
    I.A. Batalin and G.A. Vilkovisky, Phys. Lett. 69B, 309 (1977).ADSGoogle Scholar
  36. [33]
    T. Kugo and I. Ojima, Phys. Lett. 73B, 459 (1978).ADSGoogle Scholar
  37. [34]
    J. Schwarz, “Fadeev-Popov Ghosts and BRS Symmetry in String Theories”, California Institute of Technology preprint CALT-68–1304 (1985).Google Scholar
  38. [35]
    M. Kato and K. Ogawa, Nucl. Phys. B212, 443 (1983).ADSCrossRefGoogle Scholar
  39. [36]
    S. Hwang, Phys. Rev. D28, 2614 (1983).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Joseph Lykken
    • 1
  • Stuart Raby
    • 1
  1. 1.Theoretical Division T-8, Mail Stop B285Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations