Skip to main content

Uncertainties in Engineering Design: Mathematical Theory and Numerical Experience

  • Chapter

Part of the book series: General Motors Research Laboratories Symposia Series ((RLSS))

Abstract

The paper addresses the question of the reliability of engineering computations. It presents a set of paradoxical, unexpected results which shows that the common practice can lead to unreliable results and conclusions. The theory and implementation of the analysis of elasticity problems with stochastic input data (loads, domain, coefficients) are outlined. Numerical examples illustrate the ideas and results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuška, The continuity of the solutions of elasticity problems on small deformation of the region. ZAMM 39, 411–412 (1959) (in German).

    Article  Google Scholar 

  2. I. Babuška, On randomized solution of Laplace’s equation. Casopis Pest. Mat. 86, 269–276 (1961).

    MathSciNet  MATH  Google Scholar 

  3. I. Babuška, The stability of the domain of definition with respect to basic problems of the theory of partial differential equations especially with respect to the theory of elasticity I, II. Czechoslovak Math. J. 11, 76–105, 165–203 (1961) (in Russian).

    MathSciNet  Google Scholar 

  4. I. Babuška, The theory of small change in the domain of definition in the theory of partial differential equations and its applications. Proc. Conf. EQUADIFF, pp. 13–26. Prague (1962).

    Google Scholar 

  5. I. Babuška, The stability of domains and the questions of the formulation of plate problems. Apl. Mat 7, 463–467 (1962) (in German).

    MATH  Google Scholar 

  6. I. Babuška, B. A. Szabo and I. N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Babuška and B. A. Szabo, On the rates of convergence of the finite element method. Int. J. Numer. Meth. Eng. 18, 323–341 (1982).

    Article  MATH  Google Scholar 

  8. I. Babuška and A. Miller, The post-processing approach in the finite element method, Part I, II, III. Int J. Numer. Meth. Eng. 20, 1085–1109, 1111–1129, 2311–2325 (1984).

    Article  MATH  Google Scholar 

  9. I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method. Tech. Note BN 1045, Institute for Physical Science and Technology, University of Maryland (Oct. 1985).

    Google Scholar 

  10. N. V. Banichuk, Problems and Methods of Optimal Structural Design. Plenum Press, New York (1983).

    Book  Google Scholar 

  11. P. G. Ciarlet and P. Destuynder, A justification of the two dimensional linear plate model. J. Mécanique 18, 315–344 (1979).

    MathSciNet  MATH  Google Scholar 

  12. P. G. Ciarlet and P. Rabier, Les Equations de von Karman. Lecture Notes in Mathematics No. 826. Springer-Verlag, Berlin (1980).

    MATH  Google Scholar 

  13. R. H. Gallagher, E. Atrek, K. Ragsdell and D. C. Zienkiewicz (Eds.). Optimum Structural Design. John Wiley & Sons, New York (1983).

    Google Scholar 

  14. B. Guo and I. Babuška, The h-p version of the finite element method—I: The basic approximation results; II: General results and applications. Computat Mech. (1986), to appear.

    Google Scholar 

  15. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis. Noord-hoff Gronigan, The Netherlands (1958).

    MATH  Google Scholar 

  16. R. V. Kohn and M. Vogelius, A new model for thin plates with rapidly varying thickness. Int. J. Solids Struct. 20, 333–350 (1984).

    Article  MATH  Google Scholar 

  17. R. V. Kohn and M. Vogelius, Thin plates with rapidly varying thickness and their relation to structural optimization. Institute for Mathematics and its Applications, University of Minnesota, IMA Preprint Ser. 155 (June 1985).

    Google Scholar 

  18. R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems Comm. Pure Appl. Math., to appear.

    Google Scholar 

  19. S. Larsen, Numerical analysis of elliptic partial differential equations with stochastic input data. Ph.D. Dissertation, University of Maryland (1985).

    Google Scholar 

  20. D. Morgenstern, Herleitung der Plattentheorie aus der dreidimensionalen Elasticitätstheorie. Arch. Ration. Mech. Anal. 4, 145–152 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Pironneau, Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York (1984).

    Book  MATH  Google Scholar 

  22. B. A. Szabo, Mesh design for the p-version of the finite element method. Center for Computational Mechanics, Washington University, Rep. No. WU/CCM-85/2. St. Louis, MO (1985).

    Google Scholar 

  23. B. A. Szabo, Implementation of a finite element software system with h- and p-extension capabilities. Proc. 8th Invitational UFEM Symposium: Finite Element Software Systems (Edited by H. Kardestuncer). University of Connecticut (1985).

    Google Scholar 

  24. B. A. Szabo, PROBE: Theoretical Manual. Noetic Technologies Corporation, St. Louis, MO (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Babuška, I. (1986). Uncertainties in Engineering Design: Mathematical Theory and Numerical Experience. In: Bennett, J.A., Botkin, M.E. (eds) The Optimum Shape. General Motors Research Laboratories Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9483-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9483-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9485-7

  • Online ISBN: 978-1-4615-9483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics