Skip to main content

Adaptive Finite Element Methods for Shape Optimization of Linearly Elastic Structures

  • Chapter
The Optimum Shape

Part of the book series: General Motors Research Laboratories Symposia Series ((RLSS))

Abstract

In this paper the application of adaptive grid methods with automatic remeshing schemes is discussed to solve shape optimization problems of linearly elastic structures.

After demonstrating that the final optimal shape of a structure strongly depends on the shape of finite elements near the design boundary, we briefly review the discretization error due to finite element approximations. More precisely, we derive the interpolation error to quantify the effect of distortion of the finite elements. Based on the above, an adaptive finite element grid design problem is defined using the idea of structural optimization. A necessary condition is obtained that defines a manner to adapt a given finite element grid.

Since the domain to be discretized in shape optimization problems changes its shape and size very drastically during the iterative process to find the optimal solution, remeshing must be performed at certain design stages in order to maintain the quality of finite elements of undesirable geometrical distortion. However, remeshing must be implemented without interruption of the computing process to obtain the optimal shape. This leads to numerical grid generation and adaptive methods being combined with automatic remeshing schemes.

Several shape optimization problems are solved to demonstrate the capability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. C. Zienkiewicz and J. S. Campbell, Shape optimization and sequential linear programming, Ch. 7 in Optimal Structural Design (Edited by R. H. Gallagher and O. C. Zienkiewicz). John Wiley & Sons, London, (1973).

    Google Scholar 

  2. C. V. Ramakrishnan and A. Prancavilla, Structural shape optimization using penalty functions. J. Struct Mech. 3(4), 403–422 (1974–1975).

    Article  Google Scholar 

  3. V. Tvergaard, On the optimal shape of a fillet in a bar with restrictions. Proc. IUTUM Symposium on Optimization in Structural Design. Springer Verlag, Warsaw (1973).

    Google Scholar 

  4. E. S. Kristensen and N. F. Madsen, On the optimum shape of fillets in plates subjected to multiple inplane loading cases. Int. J. Numer. Meth. Eng. 10, 1006–1019 (1976).

    Article  Google Scholar 

  5. J. P. Quéau and Ph. Trompette Two-dimensional shape optimal design by finite element method. Int. J. Numer. Meth. Eng. 15, 1603–1612 (1980).

    Article  MATH  Google Scholar 

  6. J. Oda and K. Yamazaki, A procedure to obtain a fully stressed shape of elastic continuum. Int. J. Numer. Meth. Eng. 15, 1095–1105 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. V. Banichuk, Problems and Methods of Optimal Structural Design. (Translated by V. Komkov and E. J. Haug). Plenum Press, New York (1983).

    Book  Google Scholar 

  8. K. Dems, Multiparameter shape optimization of elastic bars in torsion. Int. J. Numer. Meth. Eng. 15, 1517–1539 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Dems and Z. Mróz, Optimal shape design of multicomposite structures. J. Struct. Mech. 8(3), 309–329 (1980).

    Article  Google Scholar 

  10. K. Dems and Z. Mróz, Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-I. Int. J. Solids, Struct. 19(8), 677–692 (1983).

    Article  MATH  Google Scholar 

  11. K. Dems and Z. Mróz, Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-II. Int. J. Solids Struct. 20(6), 527–552 (1984).

    Article  MATH  Google Scholar 

  12. K. K. Choi and E. J. Haug, Shape design sensitivity analysis of elastic structures. J. Struct. Mech. 11(2), 231–269 (1983).

    Article  MathSciNet  Google Scholar 

  13. M. S. Na, N. Kikuchi and J. E. Taylor, Optimal modification of shape for two-dimensional elastic bodies. J. Struct. Mech. 11(1), 111–135 (1983).

    Article  MathSciNet  Google Scholar 

  14. N. Olhoff and J. E. Taylor, On optimal structural remodeling. J. Optim. Theory Appl. 27(4), 571–582 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Kikuchi, Adaptive grid design methods for finite element methods. Comput. Meth. Appl. Mech. Eng. (1986), to appear.

    Google Scholar 

  16. I. Babuška and M. R. Dorr, Error estimates for the combined h and p version of the finite element method. Numerische Mathematical 25, 257–277 (1981).

    Article  Google Scholar 

  17. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite computations. SIAM J. Numer. Anal. 15 736–754 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Babuška and W. C. Rheinboldt, Reliable error estimation and mesh adaptation for the finite element method, pp. 67–109 in Computational Methods in Nonlinear Mechanics (Edited by J. T. Oden). North-Holland, Amsterdam (1980).

    Google Scholar 

  19. I. Babuška and B. Szabo, On the rate of convergence of the finite element method. Int. J. Numer. Meth. Eng. 18, 323–341 (1982).

    Article  MATH  Google Scholar 

  20. I. Babuška, A. Miller and M. Vogelius, Adaptive methods and error estimation for elliptic problems of structural mechanics, pp 57–73 in Adaptive Computational Methods of Structural Mechanics (Edited by I. Babuška, et al.) SIAM, Philadelphia (1983).

    Google Scholar 

  21. M. S. Shephard, R. H. Gallagher and J. F. Abel, The synthesis of near optimum finite element meshes with iterative computer graphics. Int. J. Numer. Meth. Eng. 15 1021–1039 (1980).

    Article  MATH  Google Scholar 

  22. O. C. Zienkiewicz, J. P. Gago and D. W. Kelly. The hierarchical concept in finite element analysis. Comput. Struct. 16, 53–65 (1983).

    Article  MATH  Google Scholar 

  23. M. S. Shephard (Ed.), Finite Element Grid Optimization. ASME Special Publication, PVP-38. American Society of Mechanical Engineers (1979).

    MATH  Google Scholar 

  24. I. Babuška, J. Chandra, and J. E. Blaherty (Eds.), Adaptive Computational Methods for Partial Differential Equations. SIAM, Philadelphia (1983).

    MATH  Google Scholar 

  25. E. R. de Arantes Oliveira, I. Babuška, O. C. Zienkiewicz and J. P. de S. R. Gago (Eds.), Proc. of Int. Conf. on Accuracy Estimates and Adaptive Refinements in Finite Element Computation. Lisbon (1984).

    Google Scholar 

  26. K. Y. Chung, Shape optimization and free boundary problems with grid adaptation. Ph.D. Dissertation, University of Michigan, Ann Arbor (1985).

    Google Scholar 

  27. A. M. Winslow, Numerical solution of quasilinear Poisson equation in a nonuniform triangular mesh. J. Computat. Physics, 2, 149–172 (1967).

    MathSciNet  Google Scholar 

  28. J. Oda and K. Yamazaki, On a technique to obtain an optimum strength shape of an axisymmetric body by the finite element methods. Bull. JSME, 20 (150), 1524–1532 (1981).

    Article  Google Scholar 

  29. E. Schnack. An optimization procedure for stress concentration by finite element technique. Int. J. Numer. Meth. Eng. 14, 115–124 (1979).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kikuchi, N., Chung, K.Y., Torigaki, T., Taylor, J.E. (1986). Adaptive Finite Element Methods for Shape Optimization of Linearly Elastic Structures. In: Bennett, J.A., Botkin, M.E. (eds) The Optimum Shape. General Motors Research Laboratories Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9483-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9483-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9485-7

  • Online ISBN: 978-1-4615-9483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics