Skip to main content

Automatic Finite Element Modeling for Use with Three-Dimensional Shape Optimization

  • Chapter
The Optimum Shape

Part of the book series: General Motors Research Laboratories Symposia Series ((RLSS))

Abstract

A key aspect of the shape optimization process is the generation and control of the numerical analysis models used to evaluate the constraint and gradient information required during the optimization. In general, the numerical analysis discretization, assumed here to be a finite element mesh, must be changed as the object evolves from its original to optimal shape. This paper discusses the capabilities needed to automatically generate and control these finite element models.

The paper considers the general questions of shape control as well as numerical model generation and control for three-dimensional objects. A specific approach to automatic mesh generation, the modified octree technique, is presented which is well suited for both three-dimensional shape optimization and adaptive finite element analysis. Finally, the integration of the component modeling capabilities needed for automatic three-dimensional shape optimization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. C. Zienkiewicz and J. S. Campbell, Shape optimization and sequential linear programming, Ch. 7 in Optimum Structural Design (Edited by R. H. Gallagher and O. C. Zienkiewicz). John Wiley & Sons (1973).

    Google Scholar 

  2. M. E. Botkin and J. A. Bennett, Application of adaptive mesh refinement for the optimization of plate structures, in Accuracy Estimates and Adaptivity in Finite Element Computations (Edited by I. Babuška, E. R. de Arantes e Oliveria and O. C. Zienkiewicz). John Wiley & Sons (1986), to appear.

    Google Scholar 

  3. V. Braibant and C. Fleury, Shape optimal design using b-splines. Comput. Meth. Appl. Mech. Eng. 44, 247–267 (1984).

    Article  MATH  Google Scholar 

  4. M. H. Imam, Three-dimensional shape optimization, Int. J. Numer. Meth. Eng. 18 (5) 635–673 (1982).

    Article  Google Scholar 

  5. R. J. Yang and M. E. Botkin, A modular system for three-dimensional shape optimization. Proc. 27th AIAA Conf. Structures, Structural Dynamics and Materials, San Antonio, TX, May 1986.

    Google Scholar 

  6. A. A. G. Requicha and H. B. Voelcker, Solid modeling: A historical summary and contemporary assessment. IEEE Comput. Graphics Appl. 2 (2), 9–24 (1982).

    Article  Google Scholar 

  7. M. S. Pickett and J. W. Boyse (Eds.), Solid Modeling by Computers: From Theory to Applications. Plenum Press, New York (1984).

    Google Scholar 

  8. A. H. Barr, Superquadrics and angle preserving transformations. IEEE Comput. Graphics Appl. 1, 11–22 (1981).

    Article  Google Scholar 

  9. W. J. Gordon and C. A. Hall, Construction of curvilinear coordinate systems and applications to mesh generation. Int. J. Numer. Meth. Eng. 7, 461–477 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. A. Cook, Body oriented (natural) coordinates for generating three-dimensional meshes. Int. J. Numer. Meth. Eng. 8, 27–43 (1974).

    Article  MATH  Google Scholar 

  11. R. B. Haber, M. S. Shephard, J. F. Abel, R. H. Gallagher and D. P. Greenberg, A generalized two-dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings. Int. J. Numer. Meth. Eng. 15, 1021–1039 (1980).

    Article  Google Scholar 

  12. M. S. Shephard, M. A. Yerry and P. L. Baehmann, Automatic mesh generation allowing for efficient a priori and a posteriori mesh refinement. Comput. Meth. Appl. Mech. Eng., to appear.

    Google Scholar 

  13. T. C. Woo and T. Thomasma, An algorithm for generating solid elements in objects with holes. Comput. Struct. 8 (2), 333–342 (1984).

    Article  Google Scholar 

  14. B. Wördenweber, Volume-triangulation. CAD Group Document No. 110, University of Cambridge, Computer Laboratory, Cambridge, England (1980).

    Google Scholar 

  15. M. L. C. Sluiter and D. C. Hansen, A general purpose automatic mesh generator for shell and solid finite elements, Vol. 3 in Computers in Engineering (Edited by L. E. Hulbert). ASME Book No. G00217 (1982).

    Google Scholar 

  16. J. C. Cavendish, D. A. Field and W. H. Frey, An approach to automatic three-dimensional finite element mesh generation. Int. J. Numer. Meth. Eng. 21, 329–348 (1985).

    Article  MATH  Google Scholar 

  17. V. Ph. Nguyen, Automatic mesh generation with tetrahedronal elements. Int. J. Numer. Meth. Eng. 18, 273–280 (1982).

    Article  MATH  Google Scholar 

  18. M. A. Yerry and M. S. Shephard, Automatic three-dimensional mesh generation by the modified-octree technique. Int. J. Numer. Meth. Eng. 20, 1965–1990 (1984).

    Article  MATH  Google Scholar 

  19. M. A. Yerry and M. S. Shephard, Automatic three-dimensional mesh generation for three-dimensional solids. Comput. Struct. 20, 31–39 (1985).

    Article  Google Scholar 

  20. M. S. Shephard and M. A. Yerry, Finite element mesh generation for use with solid modeling and adaptive analysis, pp. 53–77 in Solid Modeling by Computers: From Theory to Application (Edited by M. S. Pickett and J. W. Boyse). Plenum Press, New York (1984).

    Chapter  Google Scholar 

  21. C. L. Jackins and S. L. Tanimoto, Octrees and their use in representing three-dimensional objects. Comput. Graphics Image Process. 14, 249–270 (1980).

    Article  Google Scholar 

  22. D. Meagher, Geometric modeling using octree encoding. Comput. Graphics Image Process. 9, 129–147 (1982).

    Article  Google Scholar 

  23. M. S. Shephard, N. A. B. Yehia, G. S. Burd and T. J. Weidner, Automatic crack propagation tracking. Comput. Struct. 20, 211–223 (1985).

    Article  Google Scholar 

  24. N. Kikuchi, Adaptive finite element methods for shape optimization of linearly elastic structures, in The Optimum Shape: Automated Structural Design (Edited by J. A. Bennett and M. E. Botkin). Plenum Press, New York (1986).

    Google Scholar 

  25. I. Babuška, E. R. de Arantes e Oliveria and O. C. Zienkiewicz (Eds.), Accuracy estimates and adaptive refinements in finite element computations. Int. Assoc, of Comp. Mech. Palacio Ceia, Lisbon, Portugal (June 1984).

    Google Scholar 

  26. I. Babuška and W. C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12, 1597–1615 (1978).

    Article  MATH  Google Scholar 

  27. I. Babuška and M. R. Dorr, Error estimates for combined h and p versions of the finite element method. Numer. Math. 37, 257–277 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Babuška, Feedback, adaptivity, and a posteriori estimates in finite elements: Aims, theory and experience, in Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Edited by I. Babuška, E. R. de Arantes e Oliveria and O. C. Zienkiewicz). John Wiley & Sons, (1986) to appear.

    Google Scholar 

  29. I. Babuška and A. Miller, The post-processing approach in the finite element method— Part 1: Calculation of displacements, stresses and other higher derivatives of the displacement. Int. J. Numer. Meth. Eng. 20, 1085–1109 (1984).

    Article  MATH  Google Scholar 

  30. K. Miller and R. Miller, Moving finite elements—Part 1. SIAM J. Numer. Anal. 18, 1019–1032 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Babuška, W. Gui and B. A. Szabo, Performance of the p and h-p versions of the finite element method. Tech. Note BN-1027. Inst, for Physical Science and Technology, University of Maryland (Sept. 1984).

    Google Scholar 

  32. B. Z. Szabo, Estimation and control of error based on p-convergence, in Accuracy Estimates and Adaptivity in Finite Element Computations (Edited by I. Babuška, E. R. de Arantes e Oliveria and O. C. Zienkiewicz). John Wiley & Sons, (1986) to appear.

    Google Scholar 

  33. W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive finite element refinements. ACM Trans. Math. Software 6 (2), 166–187 (1980).

    Article  MATH  Google Scholar 

  34. P. Zave and W. C. Rheinboldt, Design of an adaptive, parallel finite element system. ACM Trans. Math. Software 5 (1), 1–17 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  35. R. E. Bank, A. H. Sherman and A. Weisner, Refinement algorithms and data structures for regular local refinement, reprint, Univ. of San Diego (1982).

    Google Scholar 

  36. M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Meth. Eng., to appear.

    Google Scholar 

  37. M. S. Shephard, Adaptive finite element analysis and CAD, in Accuracy Estimates and Adaptivity in Finite Element Computations (Edited by I. Babuška, E. R. de Arantes e Oliveria and O. C. Zienkiewicz). John Wiley & Sons, (1986) to appear.

    Google Scholar 

  38. M. S. Shephard, Finite element modeling within an integrated geometric modeling environment—Part 1: Mesh generation. Engineering with Computers 1, 61–71 (1985).

    Article  Google Scholar 

  39. E. J. Haug and K. K. Choi, Material derivative methods for shape design sensitivity analyses, in The Optimum Shape: Automated Structural Design (Edited by J. A. Bennett and M. E. Botkin). Plenum Press, New York, (1986).

    Google Scholar 

  40. R. D. Cook, Loubignac’s iterative method in finite element elastostatics. Int. J. Numer. Meth. Eng. 18, 67–75 (1982).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Shephard, M.S., Yerry, M.A. (1986). Automatic Finite Element Modeling for Use with Three-Dimensional Shape Optimization. In: Bennett, J.A., Botkin, M.E. (eds) The Optimum Shape. General Motors Research Laboratories Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9483-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9483-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9485-7

  • Online ISBN: 978-1-4615-9483-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics