Skip to main content

Iron-Efficiency Reactions of Monocotyledonous and Dicotyledonous Plants

  • Chapter
Iron, Siderophores, and Plant Diseases

Part of the book series: NATO ASI Series ((NSSA,volume 117))

Abstract

Iron deficiency in plants is reflected in a decreased capability to make chlorophyll, thus resulting in yellowing of the leaves, chlorosis. A characteristic feature of iron deficiency chlorosis is that the leaf tissues bordering the veins remain green. Cells in this region utilise traces of iron arriving from the roots. Chlorosis induced by the action of toxins usually occurs uniformly in all tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon, J.S.D., DeKock, P.C., and Palmer, M.J., 1961. Aconitase levels in the leaves of iron-deficient mustard plants (Sinapis alba). Biochem. J., 80: 64–70.

    PubMed  CAS  Google Scholar 

  • Bienfait, H F., 1985. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bioenerget. Biomembr., 17: 73–83.

    Article  CAS  Google Scholar 

  • Bienfait, H.F., Bino, R.J., Van Der Bliek, A.M., Duivenvoorden, J.F., and Fontaine, J.M., 1983. Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol. Plant., 59: 196–202.

    Article  CAS  Google Scholar 

  • Brown, J.C., 1978. Mechanism of iron uptake by plants. Plant, Cell Environ., 1: 249–257.

    Article  Google Scholar 

  • Brown, J.C. and Jones, W.E., 1974. pH changes associated with iron-stress responses. Physiol. Plant., 30: 148–152.

    Article  CAS  Google Scholar 

  • Chaney, R.L., Brown, J.C. and Tiffin, L.O., 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50: 208–213.

    Article  PubMed  CAS  Google Scholar 

  • De Vos, C.H. and Bienfait, H.F., 1985. Role of organic acids in Feefficiency reactions of bean plants. Plant Physiol. (in press).

    Google Scholar 

  • Fushiya, S., Sato, Y., Nozoe, S., Nomoto, K., Takemoto, T. and Takagi, S., 1980. Avenic acid, a new amino acid possessing an iron chelating activity. Tetrahedron Lett., 21: 3071–3072.

    Article  CAS  Google Scholar 

  • Fuss, K., 1956. Die Ansaüerung der Nährlösung durch Lupinus luteus und ihre papierchromatografische Untersuchung auf saüre Wurzelausscheidungen. Flora, 144: 1–46.

    CAS  Google Scholar 

  • Kramer, D., Römheld, V., Landsberg, E. and Marschner, H., 1980. Induction of transfer-cell formation by iron deficiency in the root epidermis of Helianthus annuus L. Planta, 147: 335–339.

    Article  CAS  Google Scholar 

  • Landsberg, E.C., 1979. Einfluss des Saurestoffwechsels und der Nitratreduktion auf Eisenmangel-bedingte Veränderungen des Substrat-pH-Wertes bei mono-und dikotyle Pflanzenarten. Ph.D. Thesis, Technische Universität Berlin.

    Google Scholar 

  • Lindsay, W.L., and Schwab, A.P., 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr., 5: 821–840.

    Article  CAS  Google Scholar 

  • Lubberding, H.J., De Graaf, F.H.J.M., and Bienfait, H.F., 1985. Regeneration of reducing equivalents for extracellular Fe(III) reduction in roots of iron-deficient bean plants. Plant Physiol. (in press).

    Google Scholar 

  • Ripperger, H., and Schreiber, K., 1982. Nicotianamine and analogous amino acids, endogenous iron carriers in higher plants. Heterocycles, 17: 447–461.

    Article  CAS  Google Scholar 

  • Römheld, V., 1985. Specific uptake of Fe phytosiderophores by grasses. Plant Physiol. (in press).

    Google Scholar 

  • Römheld, V., and Kramer, D., 1983. Relationship between proton efflux and rhizodermal transfer cells induced by iron deficiency. Z. Pflanzenphysiol., 113: 73–83.

    Google Scholar 

  • Römheld, V., and Marschner, H., 1981. Rhythmic iron stress reaction in sunflower at suboptimal iron supply. Physiol. Plant., 53: 347–353.

    Article  Google Scholar 

  • Römheld, V., and Marschner, H., 1983. Mechanism of iron uptake by peanut plants. I. Fe(III) reduction, chelate splitting, and release of phenolics. Plant Physiol., 71: 949–954.

    Article  PubMed  Google Scholar 

  • Römheld, V., Muller, C., and Marschner, H., 1984. Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol., 71: 603–606.

    Article  Google Scholar 

  • Scholz, G., Schlesier, G., and Seifert, K., 1985. Effect of nicotianamine on iron uptake by the tomato mutant ‘chloronerva’. Physiol. Plant., 63: 99–104.

    Article  CAS  Google Scholar 

  • Sijmons, P.C., and Bienfait, H.F., 1983. Source of electrons for extracellular Fe(III) reduction in iron-deficient bean roots. Physiol. Plant., 59: 409–415.

    Article  CAS  Google Scholar 

  • Sijmons, P.C., Van Den Briel, M.L., and Bienfait, H.F., 1984. Cytosolic NADPH is the electron donor for extracellular Fe(III) reduction in iron-deficient beans. Plant Physiol., 75: 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, Y., Tanaka, H., Mino, Y., Ishida, T., Ota, N., Inoue, M., Nomoto, K., Yoshioka, H., and Takemoto, T., 1981. Structure, properties and transport mechanism of iron(III) complex of mugineic acid, a possible phytosiderophore. J. Am. Chem. Soc., 103: 6979–6982.

    Article  CAS  Google Scholar 

  • Venkat Raju, K., Marschner, H., and Römheld, V., 1972. Effect of iron nutritional status on iron uptake, substrate pH and production and release of organic acids and riboflavin by sunflower plants. Z. Pflanzenernahr Bodenkd., 132: 178–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Bienfait, H.F. (1986). Iron-Efficiency Reactions of Monocotyledonous and Dicotyledonous Plants. In: Swinburne, T.R. (eds) Iron, Siderophores, and Plant Diseases. NATO ASI Series, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9480-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9480-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9482-6

  • Online ISBN: 978-1-4615-9480-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics