Skip to main content

Pyoverdine-Facilitated Iron Uptake Among Fluorescent Pseudomonads

  • Chapter
Iron, Siderophores, and Plant Diseases

Part of the book series: NATO ASI Series ((NSSA,volume 117))

Abstract

Within the past few years, interest in fluorescent pseudomonads has considerably increased, some of these bacteria found in the plant rhizo-sphere having been shown to participate actively in plant growth promotion or plant disease protection for a large variety of crops (Geels and Schippers, 1983; Kloepper et al., 1980; Scher and Baker, 1980; Scher and Baker, 1982). Iron nutrition is suspected to play an important role in both phenomena, and indeed, the knowledge of the iron uptake mechanisms occurring in the fluorescent pseudomonads is an important step in the understanding of the relationships existing between plants and their microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baghdiantz, A., 1952. Role of zinc in appearance of component II of the pigment of Pseudomonas fluorescens (Flugge-Migula). Archives Scientifiques de Genève, 5: 47–48.

    Google Scholar 

  • Chakrabarty, A.M., and Roy, S.C., 1964. Effect of trace elements on the production of pigments by a pseudomonad. Biochem. J., 93: 228–231.

    PubMed  CAS  Google Scholar 

  • Cox, CD., Rinehart, K.L., Moore, M.L., and Cook, J.C., 1981. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, U.S.A. 78: 4256–4260.

    Article  CAS  Google Scholar 

  • Cox, CD. and Adams, P., 1985. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infec. Immun., 48: 130–138.

    CAS  Google Scholar 

  • Geels F.P., and Schippers, B., 1983. Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopathol. Z. 108: 207–214.

    Article  Google Scholar 

  • Georgia, F.R., and Poe, CF. 1931. Study of bacterial fluorescence in various media. I. Inorganic substances necessary for bacterial fluorescence. J. Bacteriol., 22: 349–361.

    PubMed  CAS  Google Scholar 

  • Gouda, S., and Chodat, F., 1963. Glyoxalate et succinate, facteurs determinant respectivement l’hypochromic et l’hyperchromie des cultures de Pseudomonas fluorescens. Pathologia Microbiologia, 26: 655–664.

    CAS  Google Scholar 

  • Gouda, S., and Greppin, H., 1965. Biosynthèse pigmentaire chez Pseudomonas fluorescens en fonction de la concentration du substrat hydrocarbonè ou aminè. Archives Scientifiques de Genève. 18: 716–721.

    Google Scholar 

  • King, E.A., Ward, M.K., and Raney, D.E., 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44: 301–307.

    PubMed  CAS  Google Scholar 

  • King, J.V., Campbell, J.J.R., and Eagles, B.A., 1948. Mineral requirements for fluorescin production by Pseudomonas. Can. J. Res. 26C: 514–519.

    Google Scholar 

  • Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N., 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature, 286: 885–886.

    Article  CAS  Google Scholar 

  • Lawson, E.C., Johnsson, C.B. and Hemming, B.C., 1985. Genotypic diversity of fluorescent pseudomonads as revealed by southern hybridization analysis with siderophore-related gene probes (this volume).

    Google Scholar 

  • Leinhoff, H.M., 1963. An inverse relationship of the effects of oxygen and iron on the production of fluorescin and cytochrome C by Pseudomonas fluorescens. Nature, 199: 601–602.

    Article  Google Scholar 

  • Lluch, C, Callao, V., and Olivares, J., 1973. Pigment production by Pseudomonas reptilivora. I. Effect of iron concentration in culture media. Archivs für Mikrobiologie, Deutschland. 93: 239–243.

    Article  CAS  Google Scholar 

  • Maurer, B., Muller, A., Keller-Schierlein, W., and Zahner, H., 1968. Ferribactin, ein siderochrom aus Pseudomonas fluorescens Migula, Archivs für Mikrobiologie, 60: 326–339.

    Article  CAS  Google Scholar 

  • Meyer, J.M., and Abdallah, M.A., 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physico-chemical properties. J. Gen. Microbiol., 107: 319–328.

    CAS  Google Scholar 

  • Meyer, J.M., and Hornsperger, J.M., 1978. Role of pyoverdinepf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J. Gen. Microbiol., 107: 329–331.

    CAS  Google Scholar 

  • Meyer, J.M., Mock, M., and Abdallah, M.A., 1979. Effects of iron on the protein composition of the outer membrane of fluorescent pseudo-monads. FEMS Microbiol. Letts., 5: 395–398.

    Article  CAS  Google Scholar 

  • Neilands, J.B., 1984. Siderophores of bacteria and fungi. Microbiol. Sci., 1: 9–14.

    PubMed  CAS  Google Scholar 

  • Palleroni, N.J., 1984. Pseudomonadaceae. In: Bergey’s Manual of Systematic Bacteriology, 1: 141–199. (N.R. Krieg, Ed.). Williams and Wilkins, Baltimore, London.

    Google Scholar 

  • Palumbo, S.A., 1972. Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. J. Bacteriol., 111: 430–436.

    PubMed  CAS  Google Scholar 

  • Philson, S.B., and Llinas, M., 1982a. Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization. J. Biol. Chem., 257:8081–8085.

    PubMed  CAS  Google Scholar 

  • Philson, S.B., and Llinas, M., 1982b. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy. J. Biol. Chem., 257: 8086–8090.

    PubMed  CAS  Google Scholar 

  • Scher, F.M., and Baker, R., 1980. Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology, 70: 412–417.

    Article  Google Scholar 

  • Scher, F.M., and Baker, R., 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology, 72: 1567–1573.

    Article  CAS  Google Scholar 

  • Schroeter, S., 1870. Uber durch Bakterien gebildete Pigmente. Conn’s Beitrage für der Biologie der Pflanzen, 1: 109–126.

    Google Scholar 

  • Sokol, P.A., 1984. Production of the ferripyochelin outer membrane receptor by Pseudomonas species. FEMS Microbiol. Letts., 23: 313–317.

    Article  CAS  Google Scholar 

  • Stanier, R.Y., Palleroni, N.J., and Doudoroff, M., 1966. The aerobic Pseudomonas: a taxonomic study. J. Gen. Microbiol., 43: 159–271.

    PubMed  CAS  Google Scholar 

  • Sullivan, M.X., 1905. Synthetic culture media and the biochemistry of bacterial pigments. J. Med. Res., 14: 109–160.

    PubMed  CAS  Google Scholar 

  • Teintze, M., Hossain, M.B., Barnes, C.L., Leong, J., and Van Der Helm, D., 1981. Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry, 20: 6446–6457.

    Article  PubMed  CAS  Google Scholar 

  • Teintze, M., and Leong, J., 1981. Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B10. Biochemistry, 20: 6457–6462.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hohnadel, D., Meyer, J.M. (1986). Pyoverdine-Facilitated Iron Uptake Among Fluorescent Pseudomonads. In: Swinburne, T.R. (eds) Iron, Siderophores, and Plant Diseases. NATO ASI Series, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9480-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9480-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9482-6

  • Online ISBN: 978-1-4615-9480-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics