Skip to main content

DNA-to-Protein Crosslinks and Backbone Breaks caused by Far- and Near-Ultraviolet, and Visible Light Radiations in Mammalian Cells

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

The cytotoxic, mutagenic and carcinogenic potential of germicidal far-UV* radiation has been known for decades. This radiation is not a major component of the solar radiations that reach the surface of the earth, unlike the abundant near-UV and visible radiations present in the solar spectrum. Although it has been recognized for decades that the mixture of mid-UV, near-UV, and visible radiation (wavelengths longer than 290 nm) that comprise sunlight is cytotoxic, mutagenic, and carcinogenic,1 surprisingly little attention has been paid to the specific DNA damages that may be caused in cells by these particular wavelengths of nonionizing radiation—even though these radiations are environmentally abundant, penetrate deeply through skin, and are increasingly used for cosmetic purposes (natural and artificial solar exposure of human skin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.F., “Carcinogenesis by Ultraviolet Light,” Princeton University Press, Princeton, N.J. (1959).

    Google Scholar 

  2. Bruls, W.A.G., Slaper, H., van der Leun, J.C., and Berrens, L., Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths., Photochem. Photobiol., 40: 485 (1984).

    Article  CAS  Google Scholar 

  3. Setlow, R.B., The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Natl. Acad. Sci. U.S.A., 71: 3363 (1974).

    Article  CAS  Google Scholar 

  4. Peak, M.J., J.G. Peak, M.P. Moehring and R.B. Webb, Ultraviolet action spectra for DNA dimer formation, lethality, and mutagenesis in E. coli with emphasis on the UVB region. Photochem. Photobiol., 40: 613 (1984).

    Article  CAS  Google Scholar 

  5. Peak, M.J. and J.G. Peak, Use of action spectra for identifying molecular targets and mechanisms of action of solar ultraviolet light. Physiol. Plant., 58: 367 (1983).

    Article  CAS  Google Scholar 

  6. Kantor, G.J., Effects of sunlight on mammalian cells. Photochem. Photobiol. 41: 741 (1985).

    Article  CAS  Google Scholar 

  7. Smith, P.J. and M.C. Paterson, Lethality and the induction and repair of DNA damage in far, mid or near UV irradiated human fibroblasts: Comparison of effects in normal, xeroderma pigmentosum and Bloom’s syndrome cells. Photochem. Photobiol., 36: 333 (1982).

    Article  CAS  Google Scholar 

  8. Wells, R.L. and A. Han, Action spectrum for killing and mutation of Chinese hamster ovary cells exposed to mid-and near-ultraviolet monochromatic radiation. Mutation Res., 129: 251 (1984).

    Article  CAS  Google Scholar 

  9. Peak, M.J. and J. G. Peak, Molecular Photobiology of UVA, in: “Monograph on UVA”, W. Gange and F. Urbach, eds., Plenum Publishing Corporation, New York (in press).

    Google Scholar 

  10. Huberman, E., C.K. McKeown, C.A. Jones, D.R. Hoffman and S. Murao, Induction of mutations by chemical agents at the hypoxanthine guanine phosphoribosyl transferase locus in human epithelial cells. Mutat. Res., 130: 127 (1984).

    CAS  Google Scholar 

  11. Kohn, K.W., C.A. Freidman, R.A.G. Ewig and Z.M. Igbal, DNA chain growth during replication of asynchronous L1210 cells. Alkaline elution of large DNA segments from cells lysed on filters. Biochem., 13: 4134 (1974).

    Article  CAS  Google Scholar 

  12. Kohn, K.W., R.A.G. Ewig, L.G. Erickson and L.A. Zwellig, in: “DNA Repair 1. A Laboratory Manual of Research Procedures,” E.C. Freidberg and P.C. Hanawalt, eds., Marcel Dekker, New York, pp. 379–401 (1981).

    Google Scholar 

  13. Peak, J.G., M.J. Peak, R.A. Sikorski and C.A. Jones, Induction of DNA to protein crosslinks in human cells by ultraviolet and visible radiations: Action spectrum. Photochem. Photobiol., 41: 295 (1984).

    Article  Google Scholar 

  14. Elkind, M.M. and A. Han, DNA strand lesions due to “sunlight” and UV light; A comparison of their induction in Chinese hamster and human cells, and their fate in Chinese hamster cells. Photochem. Photobiol., 27: 717 (1978).

    Article  CAS  Google Scholar 

  15. Gantt, R., G.M. Jones, E.V. Stephens, A.E. Baech and K.K. Sanford, Visible light-induced DNA crosslinks in cultured mouse and human cells, Biochim. Biophys. Acta, 565: 231 (1979).

    CAS  Google Scholar 

  16. Bradley, M.D., I.C. Hsu and C. C. Harris, Relationships between sister chromatid exchange and mutagenicity, toxicity and DNA damage. Nature, 289: 189 (1979).

    Google Scholar 

  17. Anderson, E., Y. Nakashima and W. Konigsberg, Photo-induced crosslinkage of gene-5 protein and bacteriophage fd DNA. Nucleic Acids Res., 2: 361 (1976).

    Article  Google Scholar 

  18. Han, A., M.J. Peak and J.G. Peak, Induction of DNA-protein cross-linking in Chinese hamster ovary cells by monochromatic 365 and 405 nm ultraviolet light. Photochem. Photobiol., 39: 343 (1984).

    Article  CAS  Google Scholar 

  19. Peak, M.J., J.G. Peak and C.A. Jones, Different (direct and indirect) mechanisms for the induction of DNA-protein crosslinks in human cells by far-and near-ultraviolet radiations (290 and 405 nm), Photochem. Photobiol., (in press).

    Google Scholar 

  20. Shetlar, M.D., Cross-linking of protein to nucleic acid by ultraviolet light, in: “Photochem. Photobiol. Reviews,” K.C. Smith, ed., Academic Press, New York, Vol. 5, 107–197 (1970).

    Google Scholar 

  21. Peak, M.J. and J.G. Peak, Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: Action spectrum and properties. Photochem. Photobiol., 35: 675 (1982).

    Article  CAS  Google Scholar 

  22. Rosenstein, B.S. and J.M. Ducore, Induction of DNA strand breaks in normal human fibroblasts exposed to monochromatic ultraviolet and visible wavelengths in the 260–546 nm range. Photochem Photobiol., 38: 51 (1983).

    Article  CAS  Google Scholar 

  23. Merkel, P.B., R. Nilsson and D.R. Kearns, Deuterium effects on singlet oxygen lifetimes in solutions. A new test of singlet oxygen reactions. J. Am. Chem. Soc., 94: 1030 (1972).

    Article  CAS  Google Scholar 

  24. Bielski, B.H.J. and E. Saito, Deuterium isotope effect on the decay kinetics of perhydroxyl radical. J. Phys. Chem., 75: 2263 (1971).

    Article  CAS  Google Scholar 

  25. J.G. Peak, C.S. Foote and M.J. Peak, Protection by DABC0 against inactivation of transforming DNA by near-ultraviolet light: Action spectrum and implications for involvement of singlet oxygen. Photochem. Photobiol. 34: 45 (1981).

    CAS  Google Scholar 

  26. Roza, L., G.P. van der Schans and P.H.M. Lohman, The induction and repair of DNA damage and its influence on cell death in primary human fibroblasts exposed to UV-A or UV-C radiation. Mutat. Res., 146: 89 (1985).

    CAS  Google Scholar 

  27. Dizdaruglu, M. and M.G. Simic, Radiation-induced crosslinks between thymine and phenylalanine. Int. J. Radiat. Biol., 47: 63 (1985).

    Article  Google Scholar 

  28. Sutherland, J.C. and K.P. Griffin, Absorption spectrum of DNA for wavelengths longer than 320 nm. Radiat. Res., 86: 399 (1981).

    Article  CAS  Google Scholar 

  29. Rosenstein, B.S., J.M. Ducore and S.W. Cummings, The mechanism of bilirubin photosensitized DNA strand breakage in human cells exposed to phototherapy light. Mutat. Res., 112: 397 (1983).

    CAS  Google Scholar 

  30. Rosenstein, B.S. and J.M. Ducore, Enhancement by bilirubin of DNA damage induced in human cells exposed to phototherapy light. Pediat. Res, 18: 3 (1984).

    Article  CAS  Google Scholar 

  31. Blazek, E.R. and P.V. Hariharan, Alkaline elution studies of hematoporphyrin-derivative photosensitized DNA damage and repair in Chinese hamster ovary cells. Photochem. Photobiol., 40: 5 (1984).

    Article  CAS  Google Scholar 

  32. Peak, J.C., M.J. Peak and M. MacCoss, DNA breakage caused by 334-nm ultraviolet light is enhanced by naturally occurring nucleic acid components and nucleotide coenzymes. Photochem. Photobiol., 39: 713 (1984).

    Article  CAS  Google Scholar 

  33. Morowitz, H.J., Absorption effects in volume irradiation of micro organisms. Science, 111: 229 (1950).

    Article  CAS  Google Scholar 

  34. Holmberg, M., Zs. Almassy, M. Langerberg and B. Niejahr, The repair of strand breaks in human lymphocytes exposed to near UV-radiation (UVA) and far UV-radiation (UVC). Photochem. Photobiol., 41: 437 (1985).

    Article  CAS  Google Scholar 

  35. Cunningham, M.J., J.S. Johnson, S.M. Giovanazzi and M.J. Peak, Photosensitized production of superoxide anion by monochromatic (290–405 nm) ultraviolet irradiation of NADH and NADPH coenzymes. Photochem. Photobiol., (in press).

    Google Scholar 

  36. Bradley, M.O., L.C. Erickson and K.W. Kohn, Non-enzymatic strand breaks induced in mammalian cells by fluorescent light. Biochim. Biophys. Acta, 520: 11 (1978).

    CAS  Google Scholar 

  37. Ward, J.F., W.F. Blakely and E.I. Jones, Mammalian cells are not killed by DNA single strand breaks caused by hydroxyl radicals from hydrogen peroxide. Radiat. Res., (in press).

    Google Scholar 

  38. Fornace, A.J. and K.W. Kohn, DNA-protein crosslinking by ultraviolet radiation in normal human and xeroderma pigmentosum fibroblasts. Biochim. Biophys. Acta, 435: 95 (1976).

    CAS  Google Scholar 

  39. Chiu, S-M., N.M. Sokany, L.R. Friedman and N.L. Oleinick, Differential processing of ultraviolet or ionizing radiation-induced DNA-protein cross-links in Chinese hamster cells. Int. J. Radiat. Biol., 46: 681 (1984).

    Article  CAS  Google Scholar 

  40. Dizdaroglu, M. and M.G. Simic, Radiation-induced crosslinks of cytosine. Radiat. Res., 100: 41 (1984).

    Article  CAS  Google Scholar 

  41. Dizdaroglu, M. and M.G. Simic, Radiation-induced formation of thymine crosslinks. Int. J. Radiat. Biol., 46: 241 (1984).

    Article  CAS  Google Scholar 

  42. Gajewski, E., M. Dizdaroglu, H.C. Krutzsch and M.G. Simic, OH radicalinduced crosslinks of methionine peptides. Int. J. Radiat. Biol., 46: 47 (1984).

    Article  CAS  Google Scholar 

  43. Karam, L.R., M. Dizdaroglu, and M.G. Simic, OH radical-induced products of tyrosine peptides. Int. J. Radiat. Biol., 46: 715 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Peak, M.J., Peak, J.G. (1986). DNA-to-Protein Crosslinks and Backbone Breaks caused by Far- and Near-Ultraviolet, and Visible Light Radiations in Mammalian Cells. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics