Skip to main content

Abstract

Adenosine 5′-diphosphate (ADP) stimulates platelets to change shape, to develop an adhesiveness that is associated with the exposure of receptors for fibrinogen and, in the presence of sufficient calcium, to aggregate and release the contents of storage granules. These effects of ADP are competitively inhibited by the related nucleotides adenosine 5′-triphosphate (ATP) and adenosine 5′-monophosphate (AMP) which interact with the ADP receptor.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. V. R. Born, and M. J. Cross, The aggregation of blood platelets, J. Physiol. 168:178 (1963).

    CAS  Google Scholar 

  2. D. E. Macfariane, and D. C. B. Mills, The effects of ATP on platelets: Evidence against the central role of released ADP in primary aggregation, Blood 46:309 (1975).

    Google Scholar 

  3. D. C. B. Mills, and J. B. Smith, The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3f,5f-cyclic monophosphate in platelets, Biochem. J. 121:185 (1971).

    CAS  Google Scholar 

  4. R. J. Haslam, and G. M. Rosson, Effects of adenosine on levels of adenosine cyclic 3′,5′-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation, Mol. Pharmacol. 11:528 (1975).

    CAS  Google Scholar 

  5. R. J. Haslam, M.M.L. Davidson, and J.V. Desjardins, Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets, Biochem. J. 176:83 (1978).

    CAS  Google Scholar 

  6. R. J. Haslam, S. E. Salama, J. E. B. Fox, J. A. Lynham, and M. M. L. Davidson, Roles of cyclic nucleotides and of protein phosphorylation in the regulation of platelet function, in: “Platelets: Cellular Response Mechanisms and their Biological Significanee,” A. Rotman, F.A. Meyer, C. Gitler, and A. Silberberg, eds., Wiley, Chichester (1980).

    Google Scholar 

  7. D. E. Knight, and M. C. Scrutton, Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion, Nature, 309:66 (1984).

    Article  CAS  Google Scholar 

  8. E. W. Salzman, Cyclic AMP and platelet function, N. Eng. J. Med. 286:358 (1972).

    Article  CAS  Google Scholar 

  9. E. W. Salzman, D. E. MacIntyre, M. L. Steer, and J. L. Gordon, Effect on platelet activity of inhibition of adenylate cyclase, Thrombos. Res. 13:1089 (1978).

    Article  CAS  Google Scholar 

  10. D. N. Harris, M. M. Asaad, M. B. Phillips, H. J. Goldenberg, and M. J. Antonaccio, Inhibition of adenylate cyclase in human blood platelets by 9-substituted adenine derivatives, J. Cyclic Nuc. Res. 5: 125 (1979).

    CAS  Google Scholar 

  11. R. J. Haslam, and N. J. Cusack, Blood platelet receptors for ADP and for adenosine, in: “Purinergic Receptors: Receptors and Recognition Series B Volume 12,” G. Burnstock, ed., Chapman and Hall, London (1981).

    Google Scholar 

  12. A. Gaarder, J. Jonsen, S. Laland, A. Hellem, and P. A. Owren, Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets, Nature 192:531 (1961).

    Article  CAS  Google Scholar 

  13. N. J. Cusack, and S. M. O. Hourani, Partial agonist behaviour of adenosine 5′-O- (2-thiodiphosphate), Br. J. Pharmac. 73:405 (1981).

    CAS  Google Scholar 

  14. N. J. Cusack, and S. M. O. Hourani, Effects of Rp and Sp diastereoisomers of adenosine 5′-O-(1-thiodiphosphate) on human platelets, Br. J. Pharmac. 73:409 (1981).

    CAS  Google Scholar 

  15. N. J. Cusack, and S. M. O. Hourani, unpublished.

    Google Scholar 

  16. G. Gough, M. H. Maguire, and F. Penglis, Analogues of adenosine 5′-diphosphate — new platelet aggregators, Mol. Pharmacol. 8:170 (1972),

    CAS  Google Scholar 

  17. A. Gaarder, and S. Laland, Hypothesis for the aggregation of platelets by nucleotides, Nature 202:909 (1964)

    Article  CAS  Google Scholar 

  18. B. H. Ragatz, P. G. Iatridis, S. G. Iatridis, S. G. Markidou, M. F. Asterita, and J. Gadarowski, Interactions of the ADP analogs, 2′-O-methyl ADP and adenine 9-β-D-arabinofuranoside 5′-diphosphate and catecholamines with human platelets, Thrombos. Haemostas. 38:209 (1977).

    Google Scholar 

  19. P. H. Pearce, J. M. Wright, C. M. Egan, and M. C. Scutton, Interaction of human blood platelets with the 2′,3′-dialdehyde and 2′,3′-dialcohol derivatives of adenosine 5′-diphosphate and adenosine 5′-triphosphate, Eur. J. Biochem. 88:543 (1978).

    Article  CAS  Google Scholar 

  20. J. V. Stone, R. K. Singh, H. Horak, and P. G. Barton, Sulfhydryl analogues of adenosine diphosphate: chemical synthesis and activity as platelet-aggregating agents, Can. J. Biochem. 54:529 (1976).

    Article  CAS  Google Scholar 

  21. N. J. Cusack, and G. V. R. Born, Effects of photolysable 2-azido analogues of adenosine, AMP and ADP on human platelets, Proc. R. Soc. Lond. B 197:515 (1977).

    Article  CAS  Google Scholar 

  22. F. A. Robey, G. A. Jamieson, and J. B. Hunt, Synthesis and use of a new spin-labeled analogue of ADP with platelet-aggregating activity, J. Biol. Chem. 254:1114 (1979).

    CAS  Google Scholar 

  23. N. J. Cusack, M. E. Hickman, and G. V. R. Born, Effects of D-and L- enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido- analogues on human platelets, Proc. R. Soc. Lond. B 206:139 (1979).

    Article  CAS  Google Scholar 

  24. N. J. Cusack, and S. M. O. Hourani, Adenosine 5′-diphosphate antagonists and human platelets: no evidence that aggregation and inhibition of stimulated adenylate cyclase are mediated by different receptors, Br. J. Pharmac. 76:221 (1982).

    CAS  Google Scholar 

  25. N. J. Cusack, and S. M. O. Hourani, Competitive inhibition by adenosine 5′-triphosphate of the actions on human platelets of 2-chloroadenosine 5′-diphosphate, 2-azidoadenosine 5′-diphosphate and 2-methylthioadenosine 5′-diphosphate, Br. J. Pharmac. 77:329 (1982).

    CAS  Google Scholar 

  26. D. E. Macfariane, D. C. B. Mills, and P. C. Srivastava, Binding of 2-azidoadenosine [β-32] diphosphate to the receptor on intact human blood platelets which inhibits adenylate cyclase, Biochemistry 21:544 (1982).

    Article  Google Scholar 

  27. D. E. Macfarlane, P. C. Srivastava, and D. C. B. Mills, 2-Methylthioadenosine [β-32P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets, J. Clin. Invest. 71:420 (1983).

    Article  CAS  Google Scholar 

  28. N. J. Cusack, and S. M. O. Hourani, Differential inhibition by adenosine or by prostaglandin E1 of human platelet aggregation induced by adenosine 5′-O-(1-thiodiphosphate) and adenosine 5′-O-(2-thiodiphosphate), Br. J. Pharmac. 75:257 (1982).

    CAS  Google Scholar 

  29. R. W. Colman, W. R. Figures, R. F. Colman, T. A. Morinelli, S. Niewiarowski, and D. C. B. Mills, Identification of two distinct adenosine diphosphate receptors in human platelets, Trans. Assoc. Am. Physic. 93:305 (1980).

    CAS  Google Scholar 

  30. M. H. Maguire, Adenine nucleotides as tools in platelet studies, Proc. West. Pharmacol. Soc. 24:381 (1981).

    CAS  Google Scholar 

  31. R. W. Colman, and W. R. Figures, Characteristics of an ADP receptor mediating platelet activation, Mol. Cell. Biochem. 59:101 (1984).

    Article  CAS  Google Scholar 

  32. G. R. Gough, D. M. Nobbs, J. C. Middleton, F. Penglis-Caredes, and M. H. Maguire, New inhibitors of platelet aggregation. 5′-Phosphate, 5′-phosphorothioate and 5′-O-sulfamoyl derivatives of 2-substituted adenosine analogues, J. Med. Chem. 21:520 (1978).

    Article  CAS  Google Scholar 

  33. N. J. Cusack, and S. M. O. Hourani, Specific but noncompetitive inhibition by 2-alkylthio analogues of adenosine 5′-monophosphate and adenosine 5′-triphosphate of human platelet aggregation induced by adenosine 5′-diphosphate, Br. J. Pharmac. 75:397 (1982).

    CAS  Google Scholar 

  34. J. J. Czarnecki, M. S. Abbott, and B. R. Selman, Photoaffinity labeling with 2-azidoadenosine diphosphate of a tight nucleotide binding site on chloroplast coupling factor 1, Proc. Natl. Acad. Sci. USA 79:7744 (1982).

    Article  CAS  Google Scholar 

  35. G. Burnstock, and C. M. Brown, An introduction to purinergic receptors, in: “Purinergic Receptors: Receptors and Recognition Series B. Volume 12,” G. Burnstock, ed., Chapman and Hall, London (1981).

    Google Scholar 

  36. M. H. Maguire, and D. G. Satchell, Purinergic receptors in visceral smooth muscle, in: “Purinergic Receptors: Receptors and Recognition Series B Volume 12,” G. Burnstock, ed., Chapman and Hall, London (1981).

    Google Scholar 

  37. P. Lukacsko, and R. D. Krell, Response of the guinea-pig urinary bladder to purine and pyrimidine nucleotides, Eur. J. Pharmac. 80:401 (1982).

    Article  CAS  Google Scholar 

  38. G. Burnstock, N. J. Cusack, J. M. Hills, I. MacKenzie, and P. Meghji, Studies on the stereoselectivity of the P2-purinoceptor, Br. J. Pharmac. 79:907 (1983).

    CAS  Google Scholar 

  39. N. J. Cusack, and S. M. O. Hourani, Some pharmacological and biochemical interactions of the enantiomers of adenylyl 5′- (β,γ-methylene)-diphosphonate with the guinea-pig urinary bladder, Br. J. Pharmac. 82:155 (1984).

    CAS  Google Scholar 

  40. S. M. O. Hourani, Desensitisation of the guinea-pig urinary bladder by the enantiomers of adenylyl 5′-(β,γ-methylene)-diphosphonate and by substance P, Br. J. Pharmac. 82:161 (1984).

    CAS  Google Scholar 

  41. G. Burnstock, N. J. Cusack, and L. A. Meldrum, Effects of phosphorothioate analogues of ATP, ADP and AMP on guinea-pig taenia coli and urinary bladder, Br. J. Pharmac. 82:369 (1984).

    CAS  Google Scholar 

  42. N. J. Cusack, and M. Planker, Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides, Br. J. Pharmac. 67:153 (1979).

    CAS  Google Scholar 

  43. J. D. Pearson, N. J. Cusack, and W. Martin, Discrimination between ecto-ATPase and P2 purinoceptors on porcine aortic endothelium, in: IUPHAR 9th International Congress of Pharmacology, 1913P (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Cusack, N.J., Hourani, S.M.O., Welford, L.A. (1985). Characterisation of ADP Receptors. In: Westwick, J., Scully, M.F., MacIntyre, D.E., Kakkar, V.V. (eds) Mechanisms of Stimulus—Response Coupling in Platelets. Advances in Experimental Medicine and Biology, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9442-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9442-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9444-4

  • Online ISBN: 978-1-4615-9442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics