Skip to main content

Regulation of Platelet Phospholipid Metabolism

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 192))

Abstract

Recently, considerable attention has been given to platelet membrane phospholipids that are rich in arachidonic acid. One reason for this is that the liberation of this fatty acid following stimulation of the cell is followed by its rapid conversion into oxygenated products such as prostaglandin endoperoxides and thromboxane A2, which both induce platelet aggregation and constrict arterial blood vessels. Besides this, however, membrane phospholipids that are rich in arachidonic acid also may be converted into other secondary messengers such as diacylglycerol and platelet activating factor (PAF, l-0-alkyl-2-acetyl-sn-glycerophosphocholine (GPC)). In this presentation our recent studies on the nature of the phospholipid precursors of arachidonate and diacylglycerol will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lloyd, J.V. and Mustard, J.F., Changes in 32P content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin. Br. J. Haematol., 26, 243 (1974).

    Article  CAS  Google Scholar 

  2. Billah, M.M. and Lapetina, E.G., Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A 23187 J. Biol. Chem 57, 5196 (1982).

    Google Scholar 

  3. Rittenhouse-Simmons, S.E., Production of diglyceride from phosphatidylinositol in activated human platelets. J. Clin. Invest. 63, 580 (1979).

    Article  CAS  Google Scholar 

  4. Mauco, G., Chap, H. and Douste-Blazy, L., Characterization and properties of a phosphatidyl-inositol phosphodiesterase (phospholipase C) from platelet cytosol. FEBS Lett. 100, 367 (1979).

    Article  CAS  Google Scholar 

  5. Kawahara, Y., Takai, Y., Minakuchi, R., Sano, K. and Nishizuka, Y., Phospholipid turnover as a possible transmembrance single for protein phosphorylation during human platelet activation by thrombin. Biochem. Biophys. Res. Comm. 97, 309 (1980).

    Article  CAS  Google Scholar 

  6. Mauco, G., Chap, H., Simon, M.F. and Douste-Blazy, L. Phosphatidic and lysophosphatidic acid production in phospholipase C- and thrombin-treated platelets. Possible involvement of a platelet lipase. Biochemie, 60, 653 (1978).

    Article  CAS  Google Scholar 

  7. Bell, R.L., Kennerly, D.A., Stanford, N. and Majerus, P.W., Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. USA, 76, 3238 (1980).

    Article  Google Scholar 

  8. Michell, R.H., Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta. 415, 81 (1975).

    CAS  Google Scholar 

  9. Mauco, G., Dangelmaier, C.A. and Smith, J.B., Inositol lipids, Phosphatidate and diacylgylcerol share stearoylarachidonylglycerol as a common backbone in thrombin-stimulated human platelets. Biochem. J. In Press.

    Google Scholar 

  10. Berridge, M.J., Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345 (1984).

    CAS  Google Scholar 

  11. Agranoff, B.W. Murthy, P. and Seguin, E.B., Thrombin-induced phosphodiesteric cleavage of phosphatidyl-inositol bisphosphate in human platelets. J. Biol.Chem, 258, 2076 (1983).

    CAS  Google Scholar 

  12. Mueller, H.W., Purdon, A.D., Smith, J.B. and Wykle, R.L., 1–0-Alkyl-linked phosphogylcerides of human platelets. Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. Lipids 18, 814 (1983).

    Article  CAS  Google Scholar 

  13. Swendsen, C.L., Marshall, J., Ellis, P., Chilton, F.H., O’Flaherty, J.T. and Wykle, R.L., l-0-Alkyl-2-acyl-sn-glycero-3-phosphocholine. A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore, A 23187. Biochem. Biophys. Res. Comm. 113, 72 (1983).

    Article  CAS  Google Scholar 

  14. Purdon, A.D. and Smith, J.B., Turnover of arachidonic acid in the major diacyl and ether phospholipids of human platelets. Submitted for publication.

    Google Scholar 

  15. Bills, T.K., Smith, J.B. and Silver, M.J., Selective release arachidonic acid from the phospholipids of human platelets in response to thrombin. J. Clin. Invest. 60, 1 (1977).

    Article  CAS  Google Scholar 

  16. Broekman, M.J., Ward, J.W. and Marcus, A.J., Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets. J. Biol. Chem. 256, 8271 (1981).

    CAS  Google Scholar 

  17. Mahadevappa, V.G. and Holub, B.J., Relative degradation of different molecular species of phosphatidylcholine in thrombin-stimulated human platelets. J. Biol. Chem. 259, 9369 (1984).

    CAS  Google Scholar 

  18. Smith, J.B., Dangelmaier, C. and Mauco, G., Arachidonic acid is selectively released in thrombin-stimulated human platelets: Effects of agents that inhibit both the lipoxygenase and cyclooxygenase enzymes. Submitted for publication.

    Google Scholar 

  19. Hamberg, M. and Samuelsson, B., Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA 71, 3400 (1974).

    Article  CAS  Google Scholar 

  20. Neufeld, E.J. and Majerus, P.W., Arachidonate release and phosphatidic acid turnover in stimulated human platelets. J. Biol. Chem. 258, 2461 (1983).

    CAS  Google Scholar 

  21. Hamberg, M., Svensson, J. and Samuelsson, B., Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc. Natl. Acad. Sci. USA 71, 3824 (1974).

    Article  CAS  Google Scholar 

  22. McKean, M.L., Smith, J.B. and Silver, M.J., Formation of lysophosphatidlycholine by human platelets in response to thrombin. J. Biol. Chem. 256, 1522 (1981).

    CAS  Google Scholar 

  23. Mahadevappa, V.G. and Holub, B.J., The molecular species composition of individual diacyl phospholipids in human platelets. Biochim. Biophys. Acta. 713, 73 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Smith, J.B., Dangelmaier, C., Purdon, A.D., Mauco, G. (1985). Regulation of Platelet Phospholipid Metabolism. In: Westwick, J., Scully, M.F., MacIntyre, D.E., Kakkar, V.V. (eds) Mechanisms of Stimulus—Response Coupling in Platelets. Advances in Experimental Medicine and Biology, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9442-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9442-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9444-4

  • Online ISBN: 978-1-4615-9442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics