Skip to main content

Platelet Membranes, Eicosanoid Biosynthesis and Putative Endogenous Calcium Ionophores

  • Chapter
Mechanisms of Stimulus—Response Coupling in Platelets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 192))

  • 62 Accesses

Abstract

In order to facilitate our understanding of the biochemical events that accompany surface membrane receptor activation, generation of second messengers and the sequence of metabolic events involved in mobilisation of arachidonic acid (AA) from membrane phospholipids; it is important to be able to separate subcellular fractions representative of surface membrane (SM) and membranes of intracellular origin (IM). In the case of the platelet, such preparations have proved exceedingly difficult to achieve. The isolation and characterisation of cell membranes representative of surface and intracellular origin presents the biochemist with a number of problems. Thus, in secretory cells surface membranes may contain similar structural/functional proteins, antigenic determinants, marker enzymes and other physicochemical prqperties similar to intracellular membranes, albeit in different proportions or orientations. In relation to the platelet, problems arise due to the small size of this cell and its resistance to breakage by mechanical stress forces and further by the requirement to prevent aggregation and degranulation during the preparative procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Menashi, H. Weintroub and N. Crawford. Characterisation of human platelet surface and intracellular membranes isolated by free flow electrophoresis. J.Biol.Chem. 256: 4095 (1981)

    CAS  Google Scholar 

  2. M. Lagarde, M. Guichardant, S. Menashi and N. Crawford. The phospholipid and fatty acid composition of human platelet surface and intracellular membranes isolated by high voltage free flow electrophoresis. J.Biol.Chem. 257: 3100 (1982)

    CAS  Google Scholar 

  3. M.L. McKean, J.B. Smith and M.J. Silver. Formation of lysophosphatidylcholine by human platelets in response to thrombin. J.Biol.Chem. 256: 1522 (1981)

    CAS  Google Scholar 

  4. S. Rittenhouse-Simmons. Production of diglyceride from phosphatidylinositol in activated human platelets. J.Clin.Invest. 63: 580 (1979)

    Article  CAS  Google Scholar 

  5. M. Hamberg, J. Svensson and B. Samuelsson. Resolution of prostaglandin endoperoxide synthase and thromboxane synthase of hunan platelets. Proc.Natl.Acad.Sci.USA 74: 3691 (1977)

    Article  Google Scholar 

  6. P.P.K. Ho, C.P. Walters and R.G. Hermann. Synthesis of platelet-aggregating factor by human platelet microsomes. Biochem.Biophys.Res.Commun. 69: 218 (1976)

    Article  CAS  Google Scholar 

  7. Yoshimoto, S. Yamamoto, S. Okumu and O. Hayaishi. Solubilisation and resolution of thromboxane synthesizing system from microsomes of bovine blood platelets. J.Biol.Chem. 252: 5871 (1977)

    CAS  Google Scholar 

  8. F. Carey, S. Menashi and N. Crawford. Localization of cyclo-oxygenase and thromboxane synthetase in human platelet intracellular membranes. Biochem.J. 204: 847 (1982)

    CAS  Google Scholar 

  9. D.H. Nugteren. Arachidonate lipoxygenase in blood platelets. Biochim.Biophys.Acta 380: 299 (1975)

    CAS  Google Scholar 

  10. P.P.K. Ho, P. Walters and H.R. Sullivan. A particulate arachidonate lipoxygenase in human blood platelets. Biochim.Biophys.Res.Commun. 76: 398 (1977)

    Article  CAS  Google Scholar 

  11. M. Lagarde, M. Croset, K.S. Authi and N. Crawford. Subcellular localization and some properties of lipoxygenase activity in hunan blood platelets. Biochem.J. 222: 495 (1984)

    CAS  Google Scholar 

  12. M. Lagarde, S. Menashi and N. Crawford. Localization of phospholipase A2 and diglyceride lipase activities in human platelet intracellular membranes. FEBS Lett 124: 23 (1981)

    Article  CAS  Google Scholar 

  13. J.M. Gerrard, J.G. White, G.H.R. Rao and D.W. Townsend. Localization of platelet prostaglandin production in the platelet dense tubular system. Am.j.Pathol. 83: 283 (1976)

    CAS  Google Scholar 

  14. N. Hack, F. Carey and N. Crawford. The inhibition of platelet cyclo-oxygenase by aspirin is associated with the acetylation of a 72KDa polypeptide in the intracellular membranes. Biochem.J. 223: 105 (1984)

    CAS  Google Scholar 

  15. D. Haworth, R.W. Fisher and F. Carey. Inverse coupling of lipoxygenase and cyclo-oxygenase in human platelet microsomal fractions. Biochem.Soc.Trans. 10: 239 (1982)

    CAS  Google Scholar 

  16. J.M. Gerrard, J.G. White and D.A. Peterson. The platelet dense tubular system: its relationship to prostaglandin synthesis and calcium flux. Thrombos.Haemostas.(Stuttg) 40: 224 (1978)

    CAS  Google Scholar 

  17. J.M. Gerrard, A.M. Butler, G. Graff, S.F. Stoddard and J.G. White. Prostaglandin endoperoxides promote calcium release from a platelet membrane fraction in vitro. Prostaglandins and Medicine 1: 373 (1978)

    Article  CAS  Google Scholar 

  18. J.P. Rybicki, D.L. Venton and G.C. LeBreton. The thromboxane antagonist, 13-azaprostanoic acid, inhibits arachidonic acid-induced Ca2+ release from ioslated platelet membrane vesciles. Biochim.Biophys.Acta. 751: 66 (1983)

    Google Scholar 

  19. S. Menashi, C. Davis and N. Crawford. Calcium uptake associated with an intracellular membrane fraction prepared from himan blood platelets by high voltage, free flow electrophoreis. FEBS Lett 140: 298 (1982)

    Article  CAS  Google Scholar 

  20. F. Carey, S. Menashi and N. Crawford. Prostaglandin endoperoxides and thromboxane do not promote release of sequestered Ca2+ from platelet intracellular membrane vesicles. Prostaglandins 27: Supplement 42 (1984)

    Article  Google Scholar 

  21. S. Menashi, K.S. Authi, F. Carey and N. Crawford. Characterisation of the calcium-sequestering process associated with human platelet intracellular membranes isolated by free flow electrophoresis. Biochem.J. 222: 413 (1984)

    CAS  Google Scholar 

  22. T.J. Rink, A. Sanchez and T.J. Hallam. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305: 317 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Carey, F., Menashi, S., Authi, K.S., Hack, N., Lagarde, M., Crawford, N. (1985). Platelet Membranes, Eicosanoid Biosynthesis and Putative Endogenous Calcium Ionophores. In: Westwick, J., Scully, M.F., MacIntyre, D.E., Kakkar, V.V. (eds) Mechanisms of Stimulus—Response Coupling in Platelets. Advances in Experimental Medicine and Biology, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9442-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9442-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9444-4

  • Online ISBN: 978-1-4615-9442-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics