Skip to main content

Raman Spectra and Structure of Fluorine- and Water-Bearing Silicate Glasses and Melts

  • Chapter
Advances in Materials Characterization II

Part of the book series: Materials Science Research ((MSR,volume 19))

Abstract

Transport and thermodynamic properties of water- and fluorine-bearing silicate melts differ significantly from those of their F- and H2O-free equivalents (e.g., Hirayama and Camp, 1969; Kogarko and Kriegman, 1973; Burnham, 1979). For example, their viscosities and densities decrease dramatically as only a few percent of these components are added. Furthermore, the magnitudes of such changes caused by either water or fluorine resemble each other. Liquidus phase equilibria of fluorine- or water-bearing silicate systems also differ dramatically from those of F- and H2O-free systems. From these observations it can be inferred that F and H2O profoundly affect the structure of silicate melts. In order to understand the solution mechanisms it is necessary to determine the individual complexing mechanisms of F and H2O with the silicate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyd, F. R., and England, J. L., 1960, Apparatus for phase equilibrium measurements at pressures to 50 kilobars and temperatures up to 1750°C, J. Geophys. Res., 65:741.

    Article  CAS  Google Scholar 

  • Burnham, C. W., 1979, The importance of volatile constituents, in: “The Evolution of the Igneous Rocks—Fiftieth Anniversary Perspectives,” H. S. Yoder, Jr. ed., Princeton Univ. Press, Princeton.

    Google Scholar 

  • Dumas, P., Corset, J., Cavalho, W., Levy, Y., and Neuman, Y., 1982, Fluorine-doped vitreous silica analysis of fiber optics performed by vibrational spectroscopy, J. Non-Cryst. Solids, 47:239.

    Article  CAS  Google Scholar 

  • Freund, F., 1982, Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: a Raman spectroscopic study: discussion, Am. Mineral., 67:153.

    CAS  Google Scholar 

  • Furukawa, F., Fox, K. E., and White, W. B., 1981, Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses, J. Chem. Phys., 75:3226.

    Article  CAS  Google Scholar 

  • Gilbert, B. G., Mamantov, G., and Begun, A., 1975, Raman spectra of aluminum fluoride containing melts and the ionic equilibrium in molten cryolite type mixtures, J. Chem. Phys., 62:950.

    Article  CAS  Google Scholar 

  • Hirayama, C., and Camp, F. E., The effect of fluorine and chlorine substitution and fining of soda-lime and potassium-barium silicate glass, Glass Technol., 10:123.

    Google Scholar 

  • Kogarko, L. N., and Kriegman, L. D., 1973, Structural position of fluorine in silicate melts (according to melting curves), Geochem. Int., 9:34.

    Google Scholar 

  • Long, D. A., 1977, “Raman Spectroscopy”, McGraw-Hill, New York.

    Google Scholar 

  • Mysen, B. O., Finger, L. W., Seifert, F. A., and Virgo, D., 1982a, Curve-fitting of Raman spectra of amorphous materials, Am. Mineral., 67:686.

    CAS  Google Scholar 

  • Mysen, B. O., Virgo, D., and Seifert, F. A., 1982b, The structure of silicate melts: implications for chemical and physical properties of natural magma, Rev. Geophys., 20:353.

    Article  CAS  Google Scholar 

  • Powell, M. J. D., 1964a, An efficient method for finding a minimum as a function of several variables without calculating derivatives, Computer J., 7:155.

    Article  Google Scholar 

  • Powell, M. J. D., 1964b, A method for minimizing a sum of non-linear functions without calculating derivatives, Computer J., 7:303.

    Article  Google Scholar 

  • Powell, M. J. D., and Fletcher, R., 1963, A rapidly converging descent method for minimization, Computer J., 6:163.

    Google Scholar 

  • Seifert, F. A., Mysen, B. O., and Virgo, D., 1981, Quantitative determination of proportions of anionic units in silicate melts, Carnegie Inst. Washington Year Book, 80:301.

    Google Scholar 

  • Seifert, F. A., Mysen, B. O., and Virgo, D., 1982, Three-dimensional network structure in the systems SiO2-NaAlO2, SiO2-CaAl204 and SiO2-MgAl2O4, Am. Mineral., 67:696.

    CAS  Google Scholar 

  • Takusagawa, N., 1980, Infrared absorption spectra and structure of fluorine-containing alkali silicate glasses, J. Non-Cryst. Solids, 42:35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Mysen, B.O., Virgo, D. (1985). Raman Spectra and Structure of Fluorine- and Water-Bearing Silicate Glasses and Melts. In: Snyder, R.L., Condrate, R.A., Johnson, P.F. (eds) Advances in Materials Characterization II. Materials Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9439-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9439-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9441-3

  • Online ISBN: 978-1-4615-9439-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics