Skip to main content

Thermal Wave Imaging of Defects in Opaque Solids

  • Chapter
Advances in Materials Characterization II

Part of the book series: Materials Science Research ((MSR,volume 19))

  • 270 Accesses

Abstract

Thermal wave imaging of defects in opaque solids is carried out by focusing the periodically modulated intensity of a heat source (conventionally a laser, electron beam, or ion beam) at the surface of the solid. Solution of the heat equation shows that the ac temperature in the solid is wave-like (thermal waves), and critically damped. These waves can be used to probe the thermal properties of the subsurface of the solid, and their reflections from discontinuities in thermal impedance can be used to image subsurface defects such as inclusions, voids, cracks, and delaminations. Various techniques have been developed to detect the resulting ac temperature variations at the sample surface, including photoacoustic (gas-cell) detection, thermoacoustic (piezoelectric transducer) detection, optical probe beams, and ac infrared detection. Thermal wave imaging is particularly useful to probe subsurfaces from depths of about 1 micron to 300 microns, with a maximum depth of about 2 mm. The effective depth is about one thermal diffusion length, and can be varied systematically by varying the heat source modulation frequency.

Examples will be given of thermal wave images of ceramics and metals, as well as an image of a turbine blade. These images were taken with laser beam excitation and gas cell or optical probe beam detection. An additional “ion-acoustic” image of implanted areas in a single crystal slab of zirconia will be presented as an example of the use of ion beam excitation of thermal waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Rosencwaig, “History of Photoacoustics”, Chapter 2 in Photoacoustics and Photoacoustic Spectroscopy, John Wiley and Sons, New York, New York (1980).

    Google Scholar 

  2. Y. H. Wong, R. L. Thomas and G. F. Hawkins, “Surface and Subsurface Structure of Solids by Laser Photoacoustic Spectroscopy”, Appl. Phys. Lett. 32, 538 (1978).

    Article  CAS  Google Scholar 

  3. J. A. Noonan and D. M. Munroe, “What is Photoacoustic Spectroscopy”, Optical Spectra, February (1979).

    Google Scholar 

  4. T. A. Moore, R. Tom, E. P. O’Harra, D. M. Anjo, and D. Benin, “In Vivo and In Vitro Studies of Biological Materials by Photoacoustic Techniques”, presented at AAAS meeting, 26–31 May 1983, Detroit, Michigan.

    Google Scholar 

  5. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy,(1980). p.297.

    Google Scholar 

  6. E. S. Cargill III, “Electron-acoustic Microscopy”, Phys. Today, 34, 27 (1981).

    Article  CAS  Google Scholar 

  7. K. O. Legg and D. N. Rose, “Scanning Ion Acoustic Microscopy for Analyzing Ceramic Surfaces”, presented at the 8th Annual Conference on Composites and Advanced Ceramic Materials, 15–18 Jan 1984, Cocoa Beach, Florida.

    Google Scholar 

  8. R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo and A. Rosencwaig, “ Subsurface Flaw Detection in Metals by Photoacoustic Microscopy”, J. Appl. Phys. 51, 1152 (1980).

    Article  CAS  Google Scholar 

  9. P. K. Kuo, L. D. Favro, L. J. Inglehart, R. L. Thomas and M. Srinivasan, “Photoacoustic Phase Signatures of Closed Cracks”, J. Appl. Phys. 52, 1258 (1982).

    Article  Google Scholar 

  10. P. K. Kuo and L. D. Favro, “A Simplified Approach to Computations of Photoacoustic Signals in Gas Filled Cells”, Appl. Phys. Lett. 40, 1012 (1982).

    Article  Google Scholar 

  11. J. C. Murphy and L. C. Aamodt, “Signal Enhancement in Photothermal Imaging Produced by Three Dimensional Heat Flow”, Appl. Phys. Lett. 39, 519 (1981)

    Article  CAS  Google Scholar 

  12. L. C. Aamodt and J. C. Murphy, “Photothermal Measurements Using a Localized Excitation Source:, J. Appl. Phys. 52, 4903 (1981).

    Article  CAS  Google Scholar 

  13. A. C. Boccara, D. Fournier and J. Badoz, “Thermo-optical Spectroscopy: Detection by the Mirage Effect”, Appl. Phys Lett., 36, 130 (1980))

    Article  CAS  Google Scholar 

  14. A. C. Boccara, D. Fournier, N. Jackson and N. Amer, “Sensitive Photothermal Deflection Technique for Measuring Absorption in Optically Thin Media”, Opt. Lett. 5, 377 (1980).

    Article  CAS  Google Scholar 

  15. R. L. Thomas, L. D. Favro, K. R. Grice, L. J. Inglehart, P. K. Kuo, J. Lhota and G. Busse, “Thermal Wave Imaging for Nondestructive Evaluation”, p 586, Proceedings of the 1982 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York (1982).

    Google Scholar 

  16. A. Rosencwaig, “High Resolution Thermal Wave Imaging” presented at AAAS meeting 26–31 May 1983, Detroit, Michigan.

    Google Scholar 

  17. L. D. Favro, K. R. Grice, L. J. Inglehart, P. K. Kuo and R. L. Thomas, “Gas-Cell Scanning Photoacoustic Microscopy (SPAM)”, presented at AAAS meeting 26–31 May 1983, Detroit, Michigan.

    Google Scholar 

  18. G. Busse, “Photothermal Remote Nondestructive Material Inspection”, presented at AAAS meeting 26–31 May 1983, Detroit, Michigan.

    Google Scholar 

  19. M. Luukkala, J. Jaarinen and A. Lehto, “Photothermal Measurement of the Thickness of Diffusion Hardened Surface Layers in Steel”, Proceedings of the 1983 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, NY, NY (1983).

    Google Scholar 

  20. J. C. Murphy and L. C. Aamodt, “Photothermal Deflection Imaging and Microstructural Characterization of Solids”, presented at AAAS meeting 26–31 May 1983, Detroit, Michigan.

    Google Scholar 

  21. Y. Martin, H. K. Wickramasinghe and E. A. Ash, “Thermo and Photo Displacement Microscopy”, p 563, Proceedings of the 1982 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York

    Google Scholar 

  22. L. C. M. Miranda, “Photodisplacement Spectroscopy of Solids: Theory”, Appl. Optics, 22, 2882 (1983).

    Article  CAS  Google Scholar 

  23. R. G. Stearns, B. T. Khuri-Yakub and G. S. Kino, “Measurements of Thermal-Elastic Interactions with Acoustic Waves”, p 595, Proceedings of the 1982 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York.

    Google Scholar 

  24. R. Stearns, B. T. Khuri-Yakub and G. S. Kino, “Phase Modulated Photoacoustics”, p 649, Proceedings of the 1983 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York (1983).

    Google Scholar 

  25. L. J. Inglehart, M. J. Lin, L. D. Favro, P. K. Kuo and R. L. Thomas, “Spatial Resolution of Thermal Wave Microscopies”, Proceedings of the 1983 Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York (1983).;L. J. Inglehart, D. J. Thomas, M. J. Lin, L. D. Favro, P. K. Kuo and R. L. Thomas, “Resolution Studies for Thermal Wave Imaging”, Review of Progress in Quantitative NDE, Vol. 4, D. O. Thompson and D. Chimenti, ed., Plenum Press, New York, New York, to be published.

    Google Scholar 

  26. L. J. Inglehart, K. R. Grice, L. D. Favro, P. K. Kuo and R. L. Thomas, “Spatial Resolution of Thermal Wave Microscopes”, Appl. Phys. Lett. 43, 446 (1983).

    Article  Google Scholar 

  27. R. L. Thomas, L. J. Inglehart, M. J. Lin, L. D. Favro and P. K. Kuo, “Thermal Diffusivity in Pure and Coated Materials”, Review of Progress in Quantitative NDE, Vol. 4, D. O. Thompson and D. Chimenti, ed., Plenum Press, New York, New York, to be published.

    Google Scholar 

  28. P. K. Kuo, L. J. Inglehart, L. D. Favro and R. L. Thomas, “Experimental and Theoretical Characterization of Near Surface Cracks in Solids by Photoacoustic Microscopy”, p 837, Proceedings of the 1981 IEEE Ultrasonics Symposium, B. R. McAvoy, ed., IEEE Press, New York, New York (1981).

    Chapter  Google Scholar 

  29. D. N. Rose, “Photoacoustic Microscopy — An Emerging Tool”, p 201, Proceedings of the 32nd Defense Conference on Nondestructive Testing, 1–3 November 1983, Wright Patterson Air Force Base, Ohio.

    Google Scholar 

  30. R. L. Thomas, L. D. Favro, P. K. Kuo and D. N. Rose, “Scanning Photoacoustic Microscopy of Aluminum with Aluminum Oxide, Roughness Standards and Rubber”, US Army Tank-Automotive Command Research and Development Center”, Warren, Michigan, Technical Report no. 12668 (1982).

    Google Scholar 

  31. R. L. Thomas, L. D. Favro, P. K. Kuo, D. N. Rose, D. Bryk, M. Chaika and J. Patt, “Scanning Photoàcoustic Microscopy of Aluminum with Aluminum Oxide, Roughness Standards and Rubber”, US Army Tank-Automotive Command, Research and Development Center, Warren, Michigan, Technical Report No. 12957 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rose, D.N. et al. (1985). Thermal Wave Imaging of Defects in Opaque Solids. In: Snyder, R.L., Condrate, R.A., Johnson, P.F. (eds) Advances in Materials Characterization II. Materials Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9439-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9439-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9441-3

  • Online ISBN: 978-1-4615-9439-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics