Skip to main content

Ecological Aspects of Heavy Metal Responses in Microorganisms

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 8))

Abstract

Much of the information concerning the influences of heavy metals on microorganisms, and the processes they mediate, is fragmentary and scattered over a wide range of scientific literature. This undoubtedly reflects the ubiquitous nature of this very important group of elements, which are characterized by metallic properties and a specific gravity greater than five (Gadd and Griffiths, 1978). Such elements include several essential for the growth, reproduction, and/or survival of all living things, some with no known biological function, and many with economic, industrial, and/or military uses. In all, about 65 elements comply with the definition of a heavy metal (Hammond, 1976). Wood (1974) considered that certain elements could be placed into three categories, each defined in terms of its environmental impact (Table I). For the purposes of this review similar guidelines have been adopted and most attention will be focused upon those metals in category 2. Little emphasis is placed here on interactions with Hg, since this metal was the subject of a recent review by Jeffries (1982). Lastly, although As has often been included in discussions of heavy metals, I have chosen to exclude it, as well as Se and Te, because it is a nonmetallic element (Hawley, 1977).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., and Templeton, B., 1967, The effect of environmental conditions on the motility of Escherichia coli, J. Gen. Microbiol. 46:175–184.

    CAS  PubMed  Google Scholar 

  • Alexander, M., 1976, Natural selection and the ecology of microbial adaptation in a biosphere, in: Extreme Environments: Mechanisms of Microbial Adaptation (M. R. Heinrich, ed.), pp. 3–25, Academic Press, New York.

    Google Scholar 

  • Austin, B., Allen, D. A., Mills, A. L., and Colwell, R. R., 1977, Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary. Can. J. Microbiol. 23:1433–1447.

    CAS  PubMed  Google Scholar 

  • Axler, R. P., Gersberg, R. M., and Goldman, C. R., 1980, Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California, Can. J. Fish. Aquat. Sci. 31:707–112.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1978, Effects of cadmium on the biota: Influence of environmental factors. Adv. Appl. Microbiol. 23:55–117.

    CAS  PubMed  Google Scholar 

  • Babich, H., and Stotzky, G., 1980, Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms, Crit. Rev. Microbiol. 8:99–145.

    CAS  PubMed  Google Scholar 

  • Beck, T., 1981, Untersuchungen über die toxische Wirkung der in Siedlungsabfällen häufigen Schwermetalle auf die Bodenmikroflora, Z. Pflanzenernaehr. Bodenkd. 144:613–627.

    CAS  Google Scholar 

  • Berk, S. G., and Colwell, R. R., 1981, Transfer of mercury through a marine microbial food web, J. Exp. Mar. Biol. Ecol. 52:157–172.

    CAS  Google Scholar 

  • Berk, S. G., Mills, A. L., Hendricks, D. L., and Colwell, R. R., 1978, Effects of ingesting mercury-containing bacteria on mercury tolerance and growth rates of ciliates, Microb. Ecol. 4:319–330.

    CAS  Google Scholar 

  • Bewley, R. J. F., 1979, The effects of zinc, lead, and cadmium pollution on the leaf surface microflora of Lolium perenne L., J. Gen. Microbiol. 110:247–254.

    CAS  Google Scholar 

  • Bewley, R. J. F., 1980, Effects of heavy metal pollution on oak leaf microorganisms, Appl. Environ. Microbiol. 40:1053–1059.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bewley, R. J. F., and Campbell, R., 1980, Influence of zinc, lead, and cadmium pollutants on the microflora of hawthorn leaves, Microb. Ecol. 6:227–240.

    CAS  PubMed  Google Scholar 

  • Bhattacheijee, J. W., and Saxena, R. P., 1983, Effect of cadmium and zinc on microbial adherence, Toxicol. Lett. 15:139–145.

    Google Scholar 

  • Bisessar, S., 1982, Effect of heavy metals on microorganisms in soils near a secondary lead smelter. Water Air Soil Pollut. 17:305–308.

    CAS  Google Scholar 

  • Blair, W. R., Olson, G. J., Brinckman, F. E., and Iverson, W. P., 1982, Accumulation and fate of tri-η-butyltin cation in estuarine bacteria, Microb. Ecol. 8:241–251.

    CAS  PubMed  Google Scholar 

  • Bouley, F., Chaumard, C., Quero, A.-M., Girard, F., and Boudene, C., 1982, Opposite effects of inhaled cadmium microparticles on mouse susceptibility to an airborne bacterial and an airborne viral infection, Sci. Total Environ. 23:185–188.

    CAS  PubMed  Google Scholar 

  • Brown, B. E., 1977, Effects of mine drainage on the River Hayle, Cornwall. A: Factors affecting concentrations of copper, zinc and iron in water, sediments and dominant invertebrate fauna, Hydrobiologia 52:221–233.

    CAS  Google Scholar 

  • Calcott, P. H., 1981, Transient loss of plasmid-mediated mercuric ion resistance after stress in Pseudomonas aeruginosa, Appl. Environ. Microbiol. 41:1348–1354.

    CAS  Google Scholar 

  • Capone, D. G., Reese, D. D., and Kiene, R. P., 1983, Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic saltmarsh sediments, Appl. Environ. Microbiol. 45:1586–1591.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter, A., 1978, Some aspects of the fungal flora in nickel-contaminated and non-contaminated soils near Sudbury, Ontario, Canada, M.Sc. thesis. University of Ontario, Toronto.

    Google Scholar 

  • Castignetti, D., and Klein, D. A., 1979, Silver iodide burn complex and silver phosphate effects on methanogenesis, J. Environ. Sci. Health Part A Environ. Sci. Eng. 14:529–546.

    Google Scholar 

  • Chai, T.-J., 1983, Characteristics of Escherichia coli grown in bay water as compared with rich medium, Appl. Environ. Microbiol. 45:1316–1323.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang, F.-H., and Broadbent, F. E., 1981, Influence of trace metals on carbon dioxide evolution from a Yolo soil. Soil Sci. 132:416–421.

    CAS  Google Scholar 

  • Cheng, K.-J., Irvin, R. T., and Costerton, J. W., 1981, Autochthonous and pathogenic colonization of animal tissues by bacteria. Can. J. Microbiol. 27:461–490.

    CAS  PubMed  Google Scholar 

  • Coughtrey, P. J., Jones, C. H., Martin, M. H., and Shales, S. W., 1979, Litter accumulation in woodlands contaminated by Pb, Zn, Cd and Cu, Oecologia (Berl.) 39:51–60.

    Google Scholar 

  • Coughtrey, P. J., Martin, M. H., Chard, J., and Shales, S. W., 1980, Microorganisms and metal retention in the woodlouse, Oniscus asellus. Soil Biol. Biochem. 12:23–27.

    CAS  Google Scholar 

  • Cromack, K., Jr., Todd, R. L., and Monk, C. D., 1975, Patterns of basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biol. Biochem. 7:265–268.

    CAS  Google Scholar 

  • Daniels, M. J., Longland, J. M., and Gilbart, J., 1980, Aspects of motility and chemotaxis in spiroplasmas, J. Gen. Microbiol. 118:429–436.

    CAS  Google Scholar 

  • Davies, A. G., and Sleep, J. A., 1979a, Photosynthesis in some British coastal waters may be inhibited by zinc pollution. Nature 277:292–293.

    CAS  Google Scholar 

  • Davies, A. G., and Sleep, J. A., 1979b, Inhibition of carbon fixation as a function of zinc uptake in natural phytoplankton assemblages, J. Mar. Biol. Assoc. U. K. 59:937–949.

    CAS  Google Scholar 

  • Davies, A. G., and Sleep, J. A., 1980, Copper inhibition of carbon fixation in coastal phytoplankton assemblages, J. Mar. Biol. Assoc. U. K. 60:841–850.

    CAS  Google Scholar 

  • Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6:195–199.

    Google Scholar 

  • Doelman, P., and Haanstra, L., 1979a, Effect of lead on soil respiration and dehydrogenase activity. Soil Biol. Biochem. 11:475–479.

    CAS  Google Scholar 

  • Doelman, P., and Haanstra, L., 1979b, Effects of lead on the decomposition of organic matter, Soil Biol. Biochem. 11:481–485.

    CAS  Google Scholar 

  • Doelman, P., and Haanstra, L., 1979c, Effect of lead on the soil bacterial microflora. Soil Biol. Biochem. 11:487–491.

    CAS  Google Scholar 

  • Drifmeyer, J. E., and Rublee, P. A., 1981, Mn, Fe, Cu and Zn in Spartina alterniflora detritus and microorganisms, Bot. Mar. 24:251–256.

    CAS  Google Scholar 

  • Dubes, G. R., Sambol, A. R., Al-Moslih, M. I., and Bradshaw, G. L., 1982, Inactivation of transforming DNA by a transient product of the interaction of Cu2++ and hydroquinone, Biochem. Biophys. Res. Commun. 109:888–894.

    CAS  PubMed  Google Scholar 

  • Duddridge, J. E., and Wainwright, M., 1980, Heavy metal accumulation by aquatic fungi and reduction in viability of Gammarus pulex fed contaminated mycelium, Water Res. 14:1605–1611.

    CAS  Google Scholar 

  • Duxbury, T., 1981, Toxicity of heavy metals to soil bacteria, FEMS Microbiol. Lett. 11:217–220.

    CAS  Google Scholar 

  • Duxbury, T., and Bicknell, B., 1983, Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol. Biochem. 15:243–250.

    CAS  Google Scholar 

  • Effler, S. W., Litten, S., Field, S. D., Tong-Ngork, T., Hale, F., Meyer, M., and Quirk, M., 1980, Whole lake responses to low level copper sulfate treatment, Water Res. 14:1489–1499.

    CAS  Google Scholar 

  • Ehrlich, H. L., 1978, How microbes cope with heavy metals, arsenic and antimony in their environment, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 381–408, Academic Press, London.

    Google Scholar 

  • Exon, J. H., Roller, L. D., and Isaacson-Kerkvliet, N., 1979, Lead-cadmium interaction: Effects on viral-induced mortality and tissue residues in mice. Arch. Environ. Health 34:469–475.

    CAS  PubMed  Google Scholar 

  • Fisher, N. S., and Frood, D., 1980, Heavy metals and marine diatoms: Influence of dissolved organic compounds on toxicity and selection for metal tolerance among four species, Mar. Biol. 59:85–93.

    CAS  Google Scholar 

  • Fisher, N. S., Bjerregaard, P., and Fowler, S. W., 1983a, Interactions of marine plankton with transuranic elements I. Biokinetics of neptunium, plutonium, americium, and californium in phytoplankton, Limnol. Oceanogr. 28:432–447.

    CAS  Google Scholar 

  • Fisher, N. S., Bjerregaard, P., and Huynh-Ngoc, L., 1983b, Interactions of marine plankton with transuranic elements II. Influence of dissolved organic compounds on americium and plutonium accumulation in a diatom. Mar. Chem. 13:45–56.

    CAS  Google Scholar 

  • Flowers, T. H., and O’Callaghan, J. R., 1983, Nitrification in soils incubated with pig slurry or ammonium sulphate, Soil Biol. Biochem. 15:337–342.

    Google Scholar 

  • Foster, P. L., 1977, Copper exclusion as a mechanism of heavy metal tolerance in a green alga, Nature 269:322–323.

    CAS  Google Scholar 

  • Foster, P. L., 1982a, Species associations and metal contents of algae from rivers polluted by heavy metals, Freshwater Biol. 12:17–39.

    CAS  Google Scholar 

  • Foster, P. L., 1982b, Metal resistances of Chlorophyta from rivers polluted by heavy metals. Freshwater Biol. 12:41–61.

    CAS  Google Scholar 

  • Freedman, B., and Hutchinson, T. C., 1980a, Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario, Can. J. Bot. 58:1722–1736.

    CAS  Google Scholar 

  • Freedman, B., and Hutchinson, T. C., 1980b, Long-term effects of smelter pollution at Sudbury, Ontario, on forest community composition. Can. J. Bot. 58:2123–2140.

    Google Scholar 

  • Gadd, G. M., and Griffiths, A. J., 1978, Microorganisms and heavy metal toxicity, Microb. Ecol. 4:303–317.

    CAS  Google Scholar 

  • Gault, R. R., and Brockwell, J., 1980, Studies on seed pelleting as an aid to legume inoculation 5. Effects of incorporation of molybdenum compounds in the seed pellet on inoculant survival, seedling nodulation and plant growth of lucerne and subterranean clover, Aust. J. Exp. Agric. Anim. Husb. 20:63–71.

    Google Scholar 

  • Gedek, B., 1981, Zur Wirkung von Kupfer im Tierfutter als Selektor antibiotikaresistenter E. co/Z-Keime beim Schwein, Tieraerztl. Umsch. 36:6–21.

    Google Scholar 

  • Glover, S. W., and Hopwood, D. A. (eds.), 1981, Genetics as a Tool in Microbiology, Cambridge University Press.

    Google Scholar 

  • Gray, T. R. G., 1976, Survival of vegetative microbes in soil, in:The Survival of Vegetative Microbes (T. R. G. Gray and J. R. Postgate eds.), pp. 327–364, Cambridge University Press.

    Google Scholar 

  • Gray, T. R. G., and Williams, S. T., 1971a, Soil Microorganisms, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Gray, T. R. G., and Williams, S. T., 1971b, Microbial productivity in soil, in: Microbes and Biological Productivity (D. F. Hughes and A. H. Rose, eds.), pp. 255–286, Cambridge University Press.

    Google Scholar 

  • Grollé, T., and Kuiper, J., 1980, Development of marine periphyton under mercury stress in a controlled ecosystem experiment. Bull. Environ. Contam. Toxicol 24:858–865.

    Google Scholar 

  • Hallas, L. E., and Cooney, J. J., 1981, Tin and tin-resistant microorganisms in Chesapeake Bay, Appl Environ. Microbiol 41:446–471.

    Google Scholar 

  • Hallas, L. E., Thayer, J. S., and Cooney, J. J., 1982, Factors affecting the toxic effect of tin on estuarine microorganisms, Appl Environ. Microbiol 44:193–197.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond, C. R., 1976, The elements, in: Handbook of Chemistry and Physics, 57th ed. (R. C. Weast, ed.), pp. 55–60, Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  • Hanlon, D., 1978, Soil animal/microbial interactions during litter decomposition, Ph.D. thesis. University of Exeter.

    Google Scholar 

  • Hardy, R. W. F., Burns, R. C., and Holsten, R. D., 1973. Applications of the acetylene- ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem. 5:47–81.

    CAS  Google Scholar 

  • Harkov, R., and Brennan, E., 1981, Cadmium in foliage alters plant response to tobacco mosaic virus, J. Air. Pollut. Control Assoc. 31:166–167.

    CAS  Google Scholar 

  • Hart, R. C., Kadis, S., and Chapman, W. L., Jr., 1982, Nutritional iron status and susceptibility toProteus mirabilis pyelonephritis in the rat. Can. J. Microbiol 28:713–717.

    CAS  PubMed  Google Scholar 

  • Harvey, R. W., Lion, L. W., Yong, L. Y., and Leckie, J. O., 1982, Enrichment and association of lead and bacteria at particulate surfaces in a salt-marsh surface layer, J. Mar. Res. 40:1201–1212.

    CAS  Google Scholar 

  • Hassett, J. M., Jennett, J. C., and Smith, J. E., 1981, Microplate technique for determining accumulation of metals by algae, Appl Environ. Microbiol 41:1097–1106.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch, G. E., Slade, R., Boykin, E., Hu, P. C., Miller, F. J., and Gardner, D. E., 1981, Correlation of effects of inhaled versus intra-tracheally injected metals on susceptibility to respiratory infection in mice. Am. Rev. Respir. Dis. 124:167–173.

    CAS  PubMed  Google Scholar 

  • Hawley, G. G., 1977, The Condensed Chemical Dictionary, 9th ed. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hines, M. E., and Jones, G. E., 1982, Microbial metal tolerance in Bermuda carbonate sediments, Appl Environ. Microbiol 44:502–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houba, C., and Remade, J., 1980, Composition of the saprophytic bacterial communities in freshwater systems contaminated by heavy metals, Microb. Ecol 6:55–69.

    CAS  PubMed  Google Scholar 

  • Huntsman, S. A., and Sunda, W. G., 1980, The role of trace metals in regulating phytoplankton growth with emphasis on Fe, Mn and Cu, in: Studies in Ecology, Vol. 7, The Physiological Ecology of Phytoplankton (L Morris, ed.), pp. 285–328, Blackwell Scientific Press, Oxford.

    Google Scholar 

  • Iverson, W. P., and Brinckman, F. E., 1978, Microbial metabolism of heavy metals, in: Water Pollution Microbiology, Vol. 2 (R. Mitchell, ed.), pp. 201–232, Wiley, New York.

    Google Scholar 

  • Jeffries, T. W., 1982, The microbiology of mercury. Prog. Indust. Microbiol 16:21–75.

    CAS  Google Scholar 

  • Johnson, I., Flower, N., and Lx)utit, M. W., 1981, Contribution of periphytic bacteria to the concentration of chromium in the crab, Helice crassa, Microb. Ecol 7:245–252.

    CAS  Google Scholar 

  • Jones, D. G., and Suttle, N. F., 1983, The effect of copper deficiency on the resistance of mice to infection with Pasteurella haemolytica, J. Comp. Pathol 93:143–149.

    CAS  Google Scholar 

  • Jones, J. G., 1982, Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 107–145, Academic Press, London.

    Google Scholar 

  • Jones, J. G., Simon, B. M., and Gardener, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol 128:1–11.

    CAS  Google Scholar 

  • Kepkay, P. E., Cooke, R. C., and Novitsky, J. A., 1979, Microbial autotrophy: A primary source of organic carbon in marine sediments. Science 204:68–69.

    CAS  PubMed  Google Scholar 

  • Kerszman, G., Josephsen, J., and Femholm, B., 1979, Platinum(II) complexes block the entry of T4 phage DNA into the host cell, Chem. Biol Interact. 28:259–268.

    CAS  PubMed  Google Scholar 

  • Khummongkol, D., Canterford, G. S., and Fryer, C., 1982, Accumulation of heavy metals in unicellular algae, Biotechnol Bioeng. 24:2643–2660.

    CAS  PubMed  Google Scholar 

  • Kirchman, D., and Mitchell, R., 1982, Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes, Appl. Environ. Microbiol. 43:200–209.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kjelleberg, S., Humphrey, B.A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43:1166–1172.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurek, E., Czaban, J., and Bollag, J.-M., 1982, Sorption of cadmium by microorganisms in competition with other soil constituents, Appl. Environ. Microbiol. 43:1011–1015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laegreid, M., Alstad, J., Klaveness, D., and Seip, H. M., 1983, Seasonal variation of cadmium toxicity toward the alga Selenastrum capricornutum Printz in two lakes with different humus content. Environ. Sci. Technol. 17:357–361.

    CAS  Google Scholar 

  • Lampkin, A. J., III, and Sommerfeld, M. R., 1982, Algal distribution in a small, intermittent stream receiving acid mine-drainage, J. Phycol. 18:196–199.

    CAS  Google Scholar 

  • Leland, H. V., Luoma, S. N., and Fielden, J. M., 1979, Bioaccumulation and toxicity of heavy metals and related trace elements, J. Water Pollut. Control Fed. 51:1592–1616.

    Google Scholar 

  • Liang, C. N., and Tabatabai, M. A., 1977, Effects of trace elements on nitrogen mineralization in soils. Environ. Pollut. 12:141–147.

    Google Scholar 

  • Lighthart, B., 1980, Effects of certain cadmium species on pure and litter populations of microorganisms, Antonie van Leeuwenhoek J. Microbiol. Serol. 46:161–167.

    CAS  Google Scholar 

  • Litchfield, C. D., Rake, J. B., Zindulis, J., Watanabe, R. T., and Stein, D. J., 1975, Optimization of procedures for recovery of heterotrophic bacteria from marine sediments, Microb. Ecol. 1:219–233.

    Google Scholar 

  • Lutkenhaus, J. F., 1977, Role of a major outer membrane protein in Escherichia coli, J. Bacteriol. 131:631–637.

    CAS  Google Scholar 

  • Lynch, J. M., and Poole, N. J. (eds.), 1979, Microbial Ecology: A Conceptual Approach, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Macaskie, L. E., and Dean, A. C. R., 1982, Cadmium accumulation by microorganisms. Environ. Technol. Lett. 3:49–56.

    CAS  Google Scholar 

  • Maadyen, A., 1971, The soil and its total metabolism, in: Methods of Study in Quantitative Soil Ecology: Population, Production and Energy Flow (J. Phillipson, ed.), pp. 1–13, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Marsh, P., 1980, Oral Microbiology, Thomas Nelson and Sons, Walton-on-Thames.

    Google Scholar 

  • Marshall, K. C., 1971, Sorptive interactions between soil particles and microorganisms, in: Soil Biochemistry, Vol. 2 (A. D. Maren and J. Skujins, eds.), pp. 409–445, Marcel Dekker, New York.

    Google Scholar 

  • Marshall, K. C., 1975, Clay mineralogy in relation to survival of soil bacteria, Annu. Rev. Phytopathol. 13:357–373.

    Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Marshall, K. C., 1978, The effects of surfaces on microbial activity, in: Water Pollution Microbiology, Vol. 2 (R. Mitchell, ed.), pp. 51–70, Wiley, New York.

    Google Scholar 

  • Marshall, K. C., and Marshman, N. A., 1978, The role of interfaces in soil microenvironments, in: Environmental Biogeochemistry and Geomicrobiology, Vol. 2: The Terrestrial Environment (W. E. Krumbein, ed.), pp. 611–618, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Mayfield, C. I., Inniss, W. E., and Sain, P., 1980, Continuous culture of mixed sediment bacteria in the presence of mercury. Water Air Soil Pollut. 13:335–349.

    CAS  Google Scholar 

  • Mrayer, J. F., Reichle, D. E., and Witkamp, M., 1974, Energy flow and nutrient cycling in a cryptozoan food-web. Oak Ridge National Laboratory.

    Google Scholar 

  • Newsome, A. L., and Wilhelm, W. E., 1983, Inhibiton of Naegleria fowleri by microbial iron-chelating agents: Ecological implications, Appl. Environ. Microbiol. 45:665–668.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordgren, A., Bååth, E., and Söderström, B., 1983, Microfungi and microbial activity along a heavy metal gradient, Appl. Environ. Microbiol. 45:1829–1837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson, B. H., and Thornton, I., 1982, The resistance patterns to metals of bacterial populations in contaminated land, Soil Sci. 33:271–277.

    CAS  Google Scholar 

  • Ortner, P. B., Kreader, C., and Harvey, G. R., 1983, Interactive effects of metals and humus on marine phytoplankton carbon uptake. Nature -59.

    Google Scholar 

  • Ottaway, J. H., 1980, The Biochemistry of Pollution, Edward Arnold, London.

    Google Scholar 

  • Pan-Hou, H. S., Nishimoto, M., and Imura, N., 1981, Possible role of membrane proteins in mercury resistance of Enterobacter aerogenes. Arch. Microbiol. 130:93–95.

    CAS  Google Scholar 

  • Parkinson, D., Gray, T. R. G., and Williams, S. T., 1971, Methods for Studying the Ecology of Soil Microorganisms, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Pedersen, D., and Sayler, G. S., 1981, Methanogenesis in freshwater sediments: Inherent variability and effects of environmental contaminants. Can. J. Microbiol. 27:198–205.

    CAS  PubMed  Google Scholar 

  • Pickaver, A. H., and Lyes, M. C., 1981, Aerobic microbial activity in surface sediments containing high or low concentrations of zinc taken from Dublin Bay, Ireland, Estuarine Coastal Shelf Sci. 12:13–22.

    CAS  Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Porter, J. R., 1983, Variation in the relationship between nitrogen fixation, leghaemoglobin, nodule numbers and plant biomass in alfalfa (Medicago sativa) caused by treatment with arsenate, heavy metals and fluoride, Physiol. Plant. 57:579–583.

    CAS  Google Scholar 

  • Porter, J. R., and Sheridan, R. P., 1981, Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride, and simulated acid rain. Plant Physiol. 68:143–148.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radford, A. J., Oliver, J., Kelly, W. J., and Reanney, D. C., 1981, Translocatable resistance to mercuric and phenyl mercuric ions in soil bacteria, J. Bacteriol. 147:1110–1112.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rai, L. C., Gaur, J. P., and Kumar, H. D., 1981, Phycology and heavy metal pollution, Biol. Rev. Camb. Philos. Soc. 56:99–151.

    CAS  Google Scholar 

  • Ramamoorthy, S., and Kushner, D. J., 1975, Binding of mercuric and other heavy metal ions by microbial growth media, Microb. Ecol. 2:162–176.

    CAS  PubMed  Google Scholar 

  • Reanney, D. C., Gowland, P. C., and Slater, J. H., 1983, Genetic interactions among microbial communities, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 379–421, Cambridge University Press.

    Google Scholar 

  • Remade, J., Houba, C., and Ninane, J., 1982, Cadmium fate in bacterial microcosms, Water Air Soil Pollut. 18:455–466.

    Google Scholar 

  • Rhoden, E. G., and Allen, J. R., 1982, Effect of B, Mn and Zn on nodulation and n2-fixation in southern peas, Commun. Soil Sci. Plant Anal. 13:243–258.

    CAS  Google Scholar 

  • Rolla, G., 1980, On the chemistry of the matrix of dental plaque, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 425–439, Ellis Horwood, Chichester, England.

    Google Scholar 

  • Rosenzweig, W. D., and Pramer, D., 1980, Influence of cadmium, zinc, and lead on growth, trap formation, and collagenase activity of nematode-trapping fungi, Appl. Environ. Microbiol. 40:694–696.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rother, J. A., Millbank, J. W., and Thornton, L, 1982, Seasonal fluctuations in nitrogen fixation (acetylene reduction) by free-living bacteria in soils contaminated with cadmium, lead and zinc, J. Soil Sci. 33:101–113.

    CAS  Google Scholar 

  • Russell-Hunter, W. D., 1970, Aquatic Productivity: An Introduction to Some Basic Aspects of Biological Oceanography and Limnology, Collier-Macmillan, London.

    Google Scholar 

  • Sanders, J. G., Ryther, J. H., and Batchelder, J. H., 1981a, Effects of copper, chlorine, and thermal addition on the species composition of marine phytoplankton, J. Exp. Mar. Biol. Ecol. 49:81–102.

    CAS  Google Scholar 

  • Sanders, J. G., Batchelder, J. H., and Ryther, J. H., 1981b, Dominance of a stressed marine phytoplankton assemblage by a copper-tolerant pennate diatom, Bot. Mar. 24:39–41.

    Google Scholar 

  • Saxena, J., and Howard, P. H., 1977, Environmental transformation of alkylated and inorganic forms of certain metals, Adv. Appl. Microbiol. 21:185–226.

    CAS  PubMed  Google Scholar 

  • Schenck, S., Chase, T., Jr., Rosenzweig, W. D., and Pramer, D., 1980, Collagenase production by nematode-trapping fungi, Appl. Environ. Microbiol. 40:567–570.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheath, R. G., Havas, M., Hellebust, J. A., and Hutchinson, T. C., 1982, Effects of longterm natural acidification on the algal communities of tundra ponds and Smoking Hills, N.W.T., Canada, Can. J. Bot. 60:58–72.

    CAS  Google Scholar 

  • Shukla, U. C., and Yadav, O. P., 1982, Effect of phosphorus and zinc on nodulation and nitrogen fixation in chickpea (Cicer arietinum L.), Plant Soil 65:239–248.

    CAS  Google Scholar 

  • Spain, J. C., Pritchard, P. H., and Bouriquin, A. W., 1980, Effects of adaptation on biodégradation rates in sediment/water cores firom estuarine and freshwater environments, Appl. Environ. Microbiol. 40:726–734.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanisich, V. A., Bennett, P. M., and Richmond, M. H., 1977, Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa, J. Bacteriol. 129:1227–1233.

    CAS  Google Scholar 

  • Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecol. 4:127–133.

    Google Scholar 

  • Strojan, C. L., 1978a, Forest leaf litter decomposition in the vicinity of a zinc smelter, Oecologia (Berl) 32:203–212.

    Google Scholar 

  • Strojan, C. L., 1978b, The impact of zinc smelter emissions on forest litter arthropods, Oikos 31:41–46.

    Google Scholar 

  • Sugarman, B., 1980, Effect of heavy metals on bacterial adherence, J. Med. Microbiol. 13:351–354.

    CAS  PubMed  Google Scholar 

  • Summers, A. O., and Silver, S., 1978, Microbial transformations of metals, Annu. Rev. Microbiol. 32:637–672.

    CAS  PubMed  Google Scholar 

  • Sunda, W.G., Barber, R. T., and Huntsman, S.A., 1981, Phytoplankton growth in nutrient rich seawater: Importance of copper-manganese cellular interactions, J. Mar. Res. 39:567–586.

    CAS  Google Scholar 

  • Swallow, K. C., Hume, D. N., and Morel, F. M. M., 1980, Sorption of copper and lead by hydrous ferric oxide. Environ. Sci. Technol. 14:1326–1331.

    CAS  Google Scholar 

  • Swift, M. J., Heal, O. W., and Anderson, J. M., 1979, Decomposition in Terrestrial Ecosystems, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Takakuwa, S., and Wall, J. D., 1981, Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel, EEMS Microbiol. Lett. 12:359–363.

    CAS  Google Scholar 

  • Tan, T. L., 1980, Effect of long-term lead exposure on the seawater and sediment bacteria from heterogeneous continuous flow cultures, Microb. Ecol. 5:295–311.

    CAS  PubMed  Google Scholar 

  • Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture: Their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119–152, Cambridge University Press.

    Google Scholar 

  • Tetaz, T. J., and Luke, R. K. J., 1983, Plasmid-controlled resistance to copper in Escherichia coli, J. Bacteriol. 154:1263–1268.

    CAS  Google Scholar 

  • Timoney, J. F., Port, J., Giles, J., and Spanier, J., 1978, Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight, Appl. Environ. Microbiol. 36:465–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Titus, J. A., Parsons, J. E., and Pfister, R. M., 1980, Translocation of mercury and microbial adaptation in a model aquatic system. Bull. Environ. Contam. Toxicol. 25:456–464.

    CAS  PubMed  Google Scholar 

  • Tso, W.-W., and Adler, J., 1974, Negative chemotaxis in Escherichia coli, J. Bacteriol. 118:560–576.

    CAS  Google Scholar 

  • Tyler, G., 1981, Heavy metals in soil biology and biochemistry, in: Soil Biochemistry, Vol. 5 (A. E. Paul and J. N. Ladd, eds.), pp. 371–414, Marcel Dekker, New York.

    Google Scholar 

  • Vaccaro, R. F., Azam, F., and Hodson, R. E., 1977, Response of natural marine bacterial populations to copper: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27:17–22.

    CAS  Google Scholar 

  • Van Hook, R. I., Harris, W. F., and Henderson, G. S., 1977, Cadmium, lead and zinc distributions and cycling in a mixed deciduous forest, Ambio 6:281–286.

    Google Scholar 

  • Varon, M., and Shilo, M., 1981, Inhibition of the predatory activity ofBdellovibrio by various environmental pollutants, Microb. Ecol. 7:107–111.

    CAS  PubMed  Google Scholar 

  • Walsh, F., and Mitchell, R., 1974, Inhibition of intermicrobial prédation by chlorinated hydrocarbons. Nature 249:673–674.

    CAS  PubMed  Google Scholar 

  • Whittaker, R. H., 1975, Communities and Ecosystems, 2nd ed., Macmillan, New York.

    Google Scholar 

  • Wickliff, C., and Evans, H. J., 1980, Effect of cadmium on the root and nodule ultrastructure olnus rubra. Environ. Pollut. (Series A) 21:287–306.

    CAS  Google Scholar 

  • Wickliff, C., Evans, H. J., Carter, K. R., and Russell, S. A., 1980, Cadmium effects on the nitrogen fixation system of red alder, J. Environ. Qual. 9:180–184.

    CAS  Google Scholar 

  • Wieser, W., and Wiest, C., 1968, ökologische Aspekte des Kupferstofíwechsels terrestischer Isopoden, Oecologia (Berl.) 1:38–48.

    Google Scholar 

  • Wildung, R. E., and Garland, T. R., 1982, Effects of plutonium on soil microorganisms, Appl. Environ. Microbiol. 43:418–423.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams, S. E., and Wollum, A. G., II, 1981, Effect of cadmium on soil bacteria and actinomycetes, J. Environ. Qual. 10:142–144.

    CAS  Google Scholar 

  • Williams, S. T., Meilly, T., and Wellington, E. M. H., 1977, The decomposition of vegetation growing on metal mine waste. Soil Biol. Biochem. 9:271–275.

    CAS  Google Scholar 

  • Witkamp, M., 1973, Compatibility of microbial measurements. Bull. Ecol. Res. Commun. (Stockholm) 17:179–188.

    Google Scholar 

  • Wood, J. M., 1974, Biological cycles for toxic elements in the environment. Science 183:1049–1052.

    CAS  PubMed  Google Scholar 

  • Wright, D. A., 1978, Heavy metal accumulation by aquatic invertebrates, Appl. Biol. 3:331–394.

    CAS  Google Scholar 

  • Yatazawa, M., Tomomatsu, N., Hosoda, N., and Nunome, K., 1980, Nitrogen fixation in Azolla-Anabaena symbiosis as affected by mineral nutrient status. Soil Sci. Plant Nutr. (Tokyo) 26:415–426.

    CAS  Google Scholar 

  • Young, F. E., and Spizizen, J., 1963, Incorporation of deoxyribonucleic acid in theBacillus subtilis transformation system, J. Bacteriol. 86:392–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaske, S. K., Dockins, W. S., and Meters, G. A., 1980, Cell envelope damage in Escherichia coli caused by short-term stress in water, Appl. Environ. Microbiol. 40:386–390.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zevenhuizen, L. P. T. M., Dolfing, J., Eshuis, E. J., Scholten-Koerselman, I. J., 1979, Inhibitory effects of copper on bacteria related to the free ion concentration, Microb. Ecol. 5:139–146.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Duxbury, T. (1985). Ecological Aspects of Heavy Metal Responses in Microorganisms. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9412-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9412-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9414-7

  • Online ISBN: 978-1-4615-9412-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics