Advertisement

Retinal-Binding Protein in the Honeybee Retina

  • I. M. Pepe
  • J. Schwemer
  • R. Paulsen
  • C. Cugnoli
Part of the NATO Asi Series book series (NSSA, volume 75)

Abstract

The morphology and physiology of the honeybee visual system have accumulated enough data to formulate general ideas on the structure and function of the compound eye. In contrast, the study of its chemistry has encountered unusual difficulties. For example important problems as the isolation and identification of the visual pigments as well as that of their turnover, have not ben solved so far.

Keywords

High Pressure Liquid Chromatography Colour Vision Visual Pigment Retinula Cell Preparative Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H. (1965). The physiological basis of colour vision in honeybees,”Ciba Foundation Symposium on Physiology and Experimental Psychology of Colour Vision”, Little, Brown and Co, Boston.Google Scholar
  2. Autrum, H. and von Zwehl, V. (1964). Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges, Z. vergl. Physiol., 48, 357–384.CrossRefGoogle Scholar
  3. Bertrand, D., Fuortes, G. and Muri, R. (1979). Pigment trasformation and electrical responses in retinula cells of drone, Apis mellifera, J. Physiol., 296, 431–441.PubMedGoogle Scholar
  4. Daumer, K. (1956). Reizmetrische Untersuchung des Farbensehens der Bienen, Z. vergl. Physiol., 38, 413–478.Google Scholar
  5. Fernandez, H.R. and Bishop, L.G. (1973). Photosensitive pigment from the worker honeybee. Apis Mellifera, Vision Res., 13, 1379–1381.PubMedCrossRefGoogle Scholar
  6. von Frisch, K. (1914). Der Farbisnn und Formensinn der Biene, Zool, Zoll. Jb., Abt. Zool. u. Physiol., 35, 1–182.Google Scholar
  7. von Frisch, K. (1949). Die Polarization des Himmelslichtes als orientierender Faktor bei den Tanzen der Bienen, Experientia, 5, 142–148.PubMedCrossRefGoogle Scholar
  8. Goldsmith, T.H. (1958). The visual system of the honeybee, Proc. Natl. Acad. Sci. USA, 44, 123–126.PubMedCrossRefGoogle Scholar
  9. Goldsmith, T.H. (1960). The nature of the retinal action potential and the spectral sensitivities of ultraviolet and green receptor systems in the compound eye of the worker honeybee, J. gen. Physiol., 43, 775–799.PubMedCrossRefGoogle Scholar
  10. Goldsmith, T.H. (1962). Fine structure of the retinulae in the compound eye of the honeybee, J. Cell. Biol., 14, 489–494.PubMedCrossRefGoogle Scholar
  11. Goldsmith, T.H. (1972). The natural history of invertebrate visual pigments, in: “Handbook of Sensory Physiology, vol. 7, Photochemistry of Vision. Dartnall, H.J.A., ed., pp. 684–719, Springer-Verlag, New York.Google Scholar
  12. Goldsmith, T.H. and Warner, L.T. (1964). Vitamin A in the vision of insects, J. gen. Physiol., 47, 433–441.PubMedCrossRefGoogle Scholar
  13. Gribakin, F.G. (1969). Cellular basis of colour vision in the honeybee. Nature, 223, 639–641.CrossRefGoogle Scholar
  14. Gribakin, F.G. (1972). The distribution of long wave photoreceptors in the compound eye of the honeybee as revealed by selective osmic staining. Vision Res., 12, 1225–1230.PubMedCrossRefGoogle Scholar
  15. Hara, T. and Hara, R. (1972). Cephalopod retinochrome, in: Handbook of Sensory Physiology, vol. 7, part 1, Photochemistry of Vision, Dartnall, H.J.A. ed., pp. 720–766. Springer-Verlag, New York.Google Scholar
  16. Pepe, I.M. and Cugnoli, C. (1980). Isolation and characterization of a water-soluble photopigment from honeybee compound eye. Vision Res., 20, 97–102.PubMedCrossRefGoogle Scholar
  17. Pepe, I.M. Perrelet, A. and Baumann, F. (1976). Isolation by Polyacrylamide gel electrophoresis of a light-sensitive vitamin A-protein complex from the retina of the honeybee drone. Vision Res., 16, 905–908.PubMedCrossRefGoogle Scholar
  18. Pepe, I.M. Schwemer, J. and Paulsen, R. (1982). Characteristics of retinal-binding proteins from the honeybee retina. Vision Res., 22, 775–781.PubMedCrossRefGoogle Scholar
  19. Perrelet, A. (1970). The fine structure of the retina of the honeybee drone, Z. Zellforsch, 108, 530–562.PubMedCrossRefGoogle Scholar
  20. Perrelet, A. Bauer, H. and Fryder, V. (1972). Fracture faces of an insect rhabdome, J. de Microscopic, 13, 97–106.Google Scholar
  21. Pilkiewicz, F.G. Pettei, M.J. Yudd, A.P. and Nakanishi, K. (1977). A simple and non-isomerizing procedure for the identification of protein-linked retináis, Expl. Eye Res., 24, 421–423.CrossRefGoogle Scholar
  22. Schwemer, J. (1979). Molekulare Grundlagen der Photorezeption bei der Schmeissfliege Calliphora erythrocephala Meig. Habilitationsschrift Abt. Biologie, Ruhr-Universitat, Bochum (W. Germany).Google Scholar
  23. Schwemer, J. (1982 a). Visual pigment turnover in fly photoreceptors. Abstract book of the Fifth International Congress of Eye Research, October 3–8. Eindhoven. The Netherlands p. 9.Google Scholar
  24. Schwemer, J. (1982 b). Pathways of rhodopsin regeneration in fly photoreceptors, Biophys. Struct. Mech., in the press.Google Scholar
  25. Varela, F.G. and Porter, K. (1969). Fine structure of visual system of the honeybee (Apis mellifera). The retina, J. Ultra- struct. Res., 29. 236–259.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • I. M. Pepe
    • 1
  • J. Schwemer
    • 2
  • R. Paulsen
    • 2
  • C. Cugnoli
    • 1
  1. 1.Institue of Cybernetics and Biophysics of CNRCamogliItaly
  2. 2.Institut fur TierphysiologieRuhr-Universitat BochumWest Germany

Personalised recommendations