In Vitro Regeneration of Visual Pigment in Isolated Vertebrate Photoreceptors

  • Ferenc I. Harosi
Part of the NATO Asi Series book series (NSSA, volume 75)


By the addition of exosenous 11-cis retinal to bleached retina fragments in vitro, homolog pigments have been obtained in carp (Cyprinus carpio), clawed frog (Xenopus laevis) and mudpuppy (Necturus maculosus) rods and cones. In each case the 11-cis retinal spontaneously condensed with the available opsin in situ and thus produced rhodopsin-type homologs instead of the original porphyropsin-type chromo-proteins. Visual pigments were identified by microspectrophotometry in side-on oriented and optically isolated cells. It was found that rod and cone outer segments can soak up large quantities of 11-cis retinal. From these stores visual pigments are spontaneously generated even after repeated bleaches. Cones under identical conditions regenerate their homologous visual pigments 2.5 to 3-fold faster than rods.


Visual Pigment Linear Dichroism Cone Pigment Dichroic Ratio Bleaching Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaboldi, M., M.G. Motto, K. Tsujimoto, V. Balosh-Nair, K. Nakanishi (1979). Hydroretinals and Hydrorhodopsins. J. Am. Chem. Soc., 101, 7082–7084.CrossRefGoogle Scholar
  2. Azuma, K., M. Azuma and W. Sickel (1977). Regeneration of rhodopsin in frog rod outer segments. J. Physiol. 271, 747–759.PubMedGoogle Scholar
  3. Balogh-Nair, V. and K. Nakanishi (1982 a). Synthetic analogs of retinal, bacteriorhodopsin, and bovine rhodopsin, in; “Methods in Enzymology”. Vol. 88 Biomembranes, Part I, V.P. and P.M. II, L. Packer, ed., pp. 496–506, Academic Press, New York.Google Scholar
  4. Balogh-Nair, V., and K. Nakanishi (1982 b). The stereochemistry of vision,“New Comprehensive Biochemistry”, chap. 7, Ch. Tammed, ed., pp. 283–334, Elsevier Biomedical Press, Amsterdam.Google Scholar
  5. Baumann, C. (1970). Regeneration of rhodopsin in the isolated retina of the frog Rana esculenta. Vision Res., 10, 627–637.PubMedCrossRefGoogle Scholar
  6. Baumann, C. (1972). The regeneration and renewal of visual pigment in vertebrates, in: “Handbook of Sensory Physiology”, Vol. VII/1, Photochemistry of Vision H.J.A. Dartnall ed., pp. 395–416, Springer-Verlag, Berlin, Heidelberg; New York.Google Scholar
  7. Bridges, C.D.B. (1973). Interrelations of visual pigments and “Vitamins A” in fish and amphibia, In “Biochemistry and Physiology of Visual Pigments”, H. Langer ed., pp. 115–121, Springer-Verlag, New York, Heidelberg, Berlin.CrossRefGoogle Scholar
  8. Bridges, C.D.B. (1977). Rhodopsin regeneration in rod outer segments: Utilization of 11-cis retinal and retinol. Exp. Eye Res., 24, 571–580.PubMedCrossRefGoogle Scholar
  9. Bridges, C.D.B. and S. Yoshikami (1970). The rhodopsin-porphyropsin system in freshwater fishes. 2. Turnover and interconversion of visual pigment prosthetic groups in light and darkness- role of the pigment epithelium. Vision Res., 10, 1333–1345.PubMedCrossRefGoogle Scholar
  10. Brown, P.K., I.R. Gibbon and G. Wald(1963). The visual cells and visual pigment of mudpuppy. Necturus, J. Cell Biol., 19, 79–106.CrossRefGoogle Scholar
  11. Cone, R.A. and P.K. Brown (1969). Spontaneous regeneration of rhodopsin in the isolated rat retina. Nature 221, 818–820.PubMedCrossRefGoogle Scholar
  12. Crescitelli, F. (1958). The natural hystory of visual pigments. Ann. N.Y. Acad. Sci., 74, 230–255.CrossRefGoogle Scholar
  13. Crescitelli, F. and H.J.A. Dartnall (1954). A photosensitive pigment of the carp retina. J. Physiol., 125, 607–627.PubMedGoogle Scholar
  14. Dowling, J.E. (1960). Chemistry of visual adaptation in the rat. Nature, 188, 114–118.PubMedCrossRefGoogle Scholar
  15. Harosi, F.I. (1975). Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol., 66, 357–382.PubMedCrossRefGoogle Scholar
  16. Harosi, F.I. (1976). Spectral relations of cone pigments in goldfish. J. Gen. Physiol., 68, 65–80.PubMedCrossRefGoogle Scholar
  17. Harosi, F.I. (1982). Recent results from single-cell microspectrophotometry: Cone pigments in frog, fish and monkey. Color Res. Applic., Vol. 7, n. 2, Part 2, pp. 135–141.CrossRefGoogle Scholar
  18. Harosi, F.I. and E.F. MacNichol, Jr. (1974 a). Dichroic microspec- trophotometer: A computer-assisted, rapid, wavelength-scanning photometer for measuring linear dichroism in single cells. J. Opt. Soc. Amer., 64, 903–918.CrossRefGoogle Scholar
  19. Harosi, F.I. and E.F. MacNichol, Jr. (1974 b). Visual pigments of goldfish cones. Spectral properties and dichroism. J. Gen. Physiol., 63, 279–304.PubMedCrossRefGoogle Scholar
  20. Honig, B., U. Dinur, K. Nakanishi, V. Balogh-Nair, M.A. Gawinowicz, M. Arnaboldi, M.G. Motto (1979). An external point-charge model for wavelength regulation in visual pigments. J. Am. Chem. Soc., 101, 7084–7086.CrossRefGoogle Scholar
  21. Hubbard, R. and G. Wald (1952). Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. Gen. Physiol., 36, 269–315.PubMedCrossRefGoogle Scholar
  22. Liebman, P.A. (1972). Microspectrophotometry of photoreceptors, in: “Handbook of Sensory Physiology’’ Vol. VII/1, Photochemistry of Vision, H.J.A. Dartnall ed., pp. 481–528, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  23. Liebman, P.A. (1973). Microspectrophotometry of visual receptors, in: “Biochemistry and Physiology of Visual Pigments”, H. Langer ed., pp. 299–305, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  24. Liebman, P.A. and G. Entine (1964). Sensitive low light level microspectrophotometer: detection of photosensitive pigments of retinal cones. J. Opt. Soc. Amer., 54, 1451–1459.CrossRefGoogle Scholar
  25. Marks, W.B. (1963). Difference spectra of the visual pigments in single goldfish cones, Ph.D. Thesis. The Johns Hopkins University, Baltimore, MD.Google Scholar
  26. Marks, W.B. (1965). Visual pigments of single goldfish cones. Physiol., 178, 14–32.Google Scholar
  27. Matsumoto, H., K. Horiuchi and T. Yoshizawa (1978). Effect of digitonin concentration on regeneration of cattle rhodopsin. Biochem. Biophys. Acta, 501, 257–268.PubMedCrossRefGoogle Scholar
  28. Pepperberg, D.R. (1982). Generation of rhodopsin and “artificial” visual pigments in electrophysiologically active photoreceptors in; “Biomembranes, Part H, Visual Pigments and Purple Membranes”, I. (L. Packer, ed.) Methods in Enzymology, Vol. 81, pp. 452–459. Academic Press, New York.CrossRefGoogle Scholar
  29. Pepperberg, D.R.; M. Lurie, P.K. Brown and J.E. Bowling (1976). Visual adaptation; Effects of externally applied retinal on the light-adapted isolated skate retina. Science, 191, 394–396.PubMedCrossRefGoogle Scholar
  30. Pepperberg, D.R., P.K. Brown, M. Lurie and J.E. Bowling (1978). Visual pigment and photoreceptor sensitivity in the isolated skate retina. J. Gen. Physiol., 71, 369–396.PubMedCrossRefGoogle Scholar
  31. Reuter, T. (1966). The synthesis of photosensitive pigments in the rods of the frog’s retina. Vision Res., 6, 15–38.PubMedCrossRefGoogle Scholar
  32. Reuter, T., R.H. White and G. Wald (1971). Rhodopsin and porphyropsin fields in the adult bullfrog retina. J. Gen. Physiol., 58, 351–371.PubMedCrossRefGoogle Scholar
  33. Rushton, W.A.H. (1961). Bark-adaptation and the regeneration of rhodopsin. J. Physiol., 156, 166–178.PubMedGoogle Scholar
  34. Rushton, W.A.H. (1963). Cone pigment kinetics in the protanope. J. Physiol., 168, 374–388.PubMedGoogle Scholar
  35. Shichi, H. (1971). Biochemistry of visual pigments. II. Phospholipid requirement and opsin conformation for regeneration of bovine rhodopsin. J. Biol. Chem., 246, 6178–6182.PubMedGoogle Scholar
  36. Stell, W.K. and F.I. Harosi (1976). Cone structure and visual pigment content in the retina of the goldfish. Vision Res., 16, 647–657.PubMedCrossRefGoogle Scholar
  37. Tsin, A.T.C., P.A. Liebman, B.B. Beatty and R. Brzymala (1980). Rod and cone visual pigments in the goldfish. Vision Res., 21, 943–946.CrossRefGoogle Scholar
  38. Wald, G. and P.K. Brown (1950). The synthesis of rhodopsin from retinene. Proc. Nat. Acad. Sci. (U.S.A.), 36, 84–92.CrossRefGoogle Scholar
  39. Wald, G. and P.K. Brown (1953). The molar extinction of rhodopsin. J. Gen. Physiol., 37, 189–200.PubMedCrossRefGoogle Scholar
  40. Witkovsky, P., G.A. Engbretson and H. Ripps (1978). Formation, Conversion and utilization of isorhodopsin, rhodopsin and porphyropsin by rod photoreceptors in the Xenopus retina. J. Gen. Physiol., 72, 821–836.PubMedCrossRefGoogle Scholar
  41. Witkovsky, P., J.S. Levine, G.A. Engbretson, G. Hassin and E.F. MacNichol, Jr. (1981). A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vision Res., 21, 867–873.PubMedCrossRefGoogle Scholar
  42. Zorn, M. and S. Futterman (1971). Properties of rhodopsin dependent on associated phospholipid. J. Biol. Chem., 246, 881–886.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ferenc I. Harosi
    • 1
  1. 1.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations