Advertisement

Photoreceptors pp 295-317 | Cite as

Quantitative Morphology of Amacrine Cells in Teleost Retina

  • S. Deplano
  • S. Vallerga
Chapter
Part of the NATO Asi Series book series (NSSA, volume 75)

Abstract

Amacrine cells in the vertebrate retina mediate the processing of visual information in the inner plexiform layer (IPL) from bipolar cells to ganglion cells, and between neighbouring amacrine cells. Although the synaptic circuitry of the IPL of teleostean retinae has been extensively investigated (Witkowsky and Dowling, 1969; Kaneko, 1973; Toyoda et al., 1973; Famiglietti et al., 1977), and we know that amacrine cells can be presynaptic and postsynaptic to bipolar and to other amacrine cells, as well as presynaptic to ganglion cells, up to now there has been no comprehensive morphological description of amacrine cells in fish retinae since the work of Cajal (1972) in the Cyprinidae and Percidae retinae. Cajal classified amacrine cells into two main groups according to the organization of their dendritic tree within the IPL: the diffuse and stratified amacrine cells. He observed a pentalamination of the IPL and therefore subdivided the stratified units into cells of the first, second, third, fourth and fifth sublayer, as well as bilayered and multilayered cells. The number of sublayers differs among different species; Scholes (1975) found six layers in the rudd, and as many as seven sublayers were observed in the Nannacara (Wagner, 1976). With the aid of flat mounted Golgi preparations the extension of the dendritic field has been added as a second descriptive criterion used to classify amacrine cells. Famiglietti and Siegfried (1980) classified amacrine cells in the rabbit retina into three groups according to the spread of their dendrites: narrow-, medium-wide, and wide-field units. An exhaustive morphological description of amacrine cells of the cat retina has been recently given by Kolb et al. (1981). They divided amacrine cells into four broad classes narrow-, small-, medium- and wide-field, and recognized 22 types of cells on the basis of both dendritic spread and stratification at the IPL.

Keywords

Ganglion Cell Bipolar Cell Amacrine Cell Plexiform Layer Dendritic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball A.K. and Dickson D.H. (1981). Taurinergic and GABA-ergic amacrine cells in the ganglion cell layer of the newt retina, Invest. Ophthal. Visual Sci. ARVO Suppl., p. 204.Google Scholar
  2. Boycott B.B. and Dowling J.E. (1969). Organization of the primate retina: light microscopy, Phil. Trans. R. Soc. B., 255, 109–184.CrossRefGoogle Scholar
  3. Boycott B.B. and Wassle H. (1974). The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. Lond., 240, 397–419.PubMedGoogle Scholar
  4. Braccini C, Gambardella G., Sandini G. and Tagliasco V. (1982). A model of the early stages of the human visual system: functional and topological transformations performed in the peripheral visual field, Biol. Cybern, (in press).Google Scholar
  5. Cajal Ramon Y.S. (1972). “The Structure of the Retina” (trans. Thorpe S.A. and Glickstein M.), p. 17–38, Thomas C.A., Springfield, Illinois.Google Scholar
  6. Famiglietti E.V. (1981). Starburst amacrines: 2 mirror-symmetric retinal networks. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 204.Google Scholar
  7. Famiglietti E.V., Kaneko A. and Tachibana M. (1977). Neuronal architecture of on and off pathways to ganglion cells in carp. Science, 198, 1267–1269.PubMedCrossRefGoogle Scholar
  8. Famiglietti E.V. and Kolb H. (1976). Structural basis for ‘ON’ and ‘OFF’-center responses in retinal ganglion cells. Science, 194, 193–195.PubMedCrossRefGoogle Scholar
  9. Famiglietti E.V. and Siegfried E.C. (1980). The amacrine cells of rabbit retina. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 70.Google Scholar
  10. Famiglietti E.V. and Vaughn J.L. (1981). Golgi impregnated amacrine cells and GABA-ergic retinal neurons: a comparison of dendritic immuno-cytochemical, and histochemical stratification in the inner plexiform layer of rat retina, J. Comp. Neurol., 197, 129–139.PubMedCrossRefGoogle Scholar
  11. Frederick J.M., Lam Dominic M.K., Rayborn M.E. and Hollyfield J.G. 1981). Identification of neurotransmitters in the human retina. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 203.Google Scholar
  12. Hayden S.A., Mills J.W., Masland R.M. (1980). Acetylcholine synthesis by displaced amacrine cells. Science, 210, 435–437.PubMedCrossRefGoogle Scholar
  13. Holmgren I.T., Ehringer B. and Dowling J.E. (1981). Synaptic organization of the indoleamine-accumulating neurons in the cat retina. Invest. Ophthal. Visual Sci. ARVO Suppl., 203.Google Scholar
  14. Hughes A. and Vaney D.I. (1980). Coronate cells: displaced amacrines of the rabbit retina, J. Comp. Neurol., 189, 169–189.PubMedCrossRefGoogle Scholar
  15. Kaneko A. (1970). Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina, J. Physiol., 270, 623–633.Google Scholar
  16. Kaneko A. (1973). Receptive field organization of bipolar and amacrine cells in the goldfish retina, J. Physiol., 235, 133–153.PubMedGoogle Scholar
  17. Kolb H. and Nelson R. (1981). Three amacrine cells of the cat retina: morphology and intracellular responses. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 184.Google Scholar
  18. Kolb H., Nelson R. and Mariani A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res., 21, 1081–1114.PubMedCrossRefGoogle Scholar
  19. Lam D.M.K., Su Y.Y.T., Swain L., Marc R.E., Brandon C. and Wu J.Y. (1979). Immunocytochemical localization of L-glutamic and decarboxylase in the goldfish retina. Nature, 278, 565–567.PubMedCrossRefGoogle Scholar
  20. Marc R.E., Stell W.K., Bok D. and Lam D.M.K. (1978). GABA-ergic pathways in the goldfish retina, J. Comp. Neurol., 172, 221–246.CrossRefGoogle Scholar
  21. Marchiafava P.L. and Weiler R. (1982). The photoresponses of structurally identified amacrine cells in the turtle retina, Proc. R. Soc. Lond. B, 214, 403–415.PubMedCrossRefGoogle Scholar
  22. Masland R.H. and Mills J.W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina, J. Cell Biol., 83, 159–178.PubMedCrossRefGoogle Scholar
  23. Massey S.C., Crawford M.L.J, and Redburn D.A. (1981). Many cholinergic amacrine cells in rabbit retina receive ON input. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 44.Google Scholar
  24. Murakami M. and Shimoda Y. (1977). Identification of amacrine and ganglion cells in the carp retina, J. Physiol., 264, 801–818.PubMedGoogle Scholar
  25. Nelson R., Famiglietti E.V. and Kolb H. (1978). Intracellular staining reveals different levels of stratification for ON and OFF-center ganglion cells in cat retina, J. Neurophysiol., 41, 472–483.PubMedGoogle Scholar
  26. Pourcho R.G. (1981). Dopaminergic amacrine cells in the cat retina. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 203.Google Scholar
  27. Scholes J.H. (1975). Colour receptors and their synaptic connexions, in the retina of a cyprinid fish, Proc. R. Soc. Lond B, 270, 61–118.Google Scholar
  28. Toyoda J.I., Hashimoto H., Ohtsu K. (1973). Bipolar-amacrine transmission in the carp retina, Vision Res., 13, 295–307.PubMedCrossRefGoogle Scholar
  29. Vallerga S. (1981). Physiological and morphological identification of amacrine cells in tiger salamander retina. Vision Res., 21, 1307–1317.PubMedCrossRefGoogle Scholar
  30. Vallerga S. and Deplano S. (1980). Structural basis for amacrine and ganglion cell responses. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 285.Google Scholar
  31. Vaney D.I. (1980). A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina, J. Comp. Neurol., 189, 215–233.PubMedCrossRefGoogle Scholar
  32. Wagner J. -H. (1976). Patterns of Golgi impregnated neurons in a predator type fish retina, in “Neural Principles in Vision” F. Zettler and R. Weiler, eds., p. 7–26 Springer-Verlag, Berlin.CrossRefGoogle Scholar
  33. West R.W. (1972). Superficial warming of epoxy blocks for cutting 25–150 µm sections to be sectioned in the 40–90 nm range. Stain Technol., 47, 201–204.PubMedGoogle Scholar
  34. Witkowsky P. and Dowling J.E. (1969). Synaptic relationships in the plexiform layers of carp retina, Z. Zellforsch. Mikrosk. Anat., 100, 60–82.CrossRefGoogle Scholar
  35. Yazulla S. (1981). GABA-ergic synapses in the goldfish retina: an autoradiographic study of 3H-Muscimol and 3H-GABA binding. Invest. Ophthal. Visual Sci. ARVO Suppl., p. 184.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • S. Deplano
    • 1
    • 2
  • S. Vallerga
    • 1
  1. 1.Istituto di Cibernetica e Biofisica del C.N.RCamogliItaly
  2. 2.Istituto di Anatomia Comparata dell-Università di GenovaItaly

Personalised recommendations