Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 15))

  • 128 Accesses

Abstract

Baryon instability is discussed here because it constitutes a crucial test of grand unified gauge theories. There is, at the present time, neither evidence that baryons are unstable nor any good reasons to suppose that they are not. Conservation of baryon number B or lepton number L must be associated with an invariance principle. Thus, charge conservation is associated with gauge invariance in electromagnetism and the existence of a long range field (i.e. massless photons). If B (or L) were absolutely conserved, we would expect a long-range field coupled to baryon number, and this should show up in Eötvös experiments as a difference in gravitational attraction for objects of the same inertial mass but different baryon number (i.e. of different elements). No such effects are observed. Several experiments — designed originally to do other things — happen to provide limits on proton stability, and we discuss these briefly before turning to the experiments dedicated to the search for nucléon decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Hennecke et al., Phys. Rev. D11:1378 (1975).

    ADS  Google Scholar 

  2. R. Steinberg and J. Evans, Proc. Neutrino Conf. ’77 Vol.2:321 (1977).

    Google Scholar 

  3. J. Learned, F. Reines and A. Soni, Phys. Rev. Lett. 43:907 (1979).

    Article  ADS  Google Scholar 

  4. J. Ellis et al., Nucl. Phys. B176:61 (1980).

    Article  ADS  Google Scholar 

  5. M.G.K. Menon, Proc. of Neutrino Conf.’76, Aachen (1976).

    Google Scholar 

  6. A. Grant, CERN internal note EF/ALG (1979).

    Google Scholar 

  7. 1MB proposal, D. Sinclair et al., presented at Workshop on Grand Unification, Ann Arbor, Michigan (1981).

    Google Scholar 

  8. Harvard-Purdue-Wisconsin proposal, C. Wilson et al., presented at Workshop on Grand Unification, Ann Arbor, Michigan (1981).

    Google Scholar 

  9. Minnesota proposal; J. Bartelt et al., Minnesota-ANL-Oxford preprint COO-1764–410, ANL-HEP-PR-81–12, OUNP-42–81 (1981).

    Google Scholar 

  10. Milano-Frascati-Torino proposal, G. Battistoni et al., Milano preprint (1979).

    Google Scholar 

  11. R.E. Marshak and R.N. Mohapatra, Phys. Lett. 91Bà222 (1980)

    Google Scholar 

  12. R.E. Marshak and R.N. Mohapatra Phys. Rev. Lett. 44:1316 (1980).

    Article  ADS  Google Scholar 

  13. M. Baldo-Ceolin, 7th Trieste Conf. on Particle Physics, (1980).

    Google Scholar 

  14. K.E. Bergkvist, Nucl. Phys. B39:317 (1972).

    Article  ADS  Google Scholar 

  15. V.A. Lyubimov et al., Phys. Lett. 94B:266 (1980).

    ADS  Google Scholar 

  16. E.F. Tretyakov et al., Proc. Neutrino Conf. ’76, Aachen (1976)

    Google Scholar 

  17. E.F. Tretyakov et al., Proc. Neutrino Conf. ’76 DESY preprint 81/012 (1981).

    Google Scholar 

  18. B. Pontecorvo, Sov. Phys. JETP 26:984 (1968).

    ADS  Google Scholar 

  19. Z. Maki et al., Prog. Th. Phys. 28:870 (1962).

    Article  ADS  MATH  Google Scholar 

  20. F. Reines, H.W. Sobel and E. Pasierb, Phys. Rev. Lett. 45:1307 (1980).

    Article  ADS  Google Scholar 

  21. F. Boehm et al., Phys. Lett. 97B:310 (1980).

    ADS  Google Scholar 

  22. M.F. Crouch et al., Phys. Rev. D18:2239 (1978).

    ADS  Google Scholar 

  23. M.R. Krishnaswamy et al., Proc. Roy. Soc. A323:489 (1971).

    ADS  Google Scholar 

  24. J. Bahcall and S.C. Frautschi, Phys. Lett. 29B:623 (1969).

    ADS  Google Scholar 

  25. R. Davis, S.C. Evans and B.T. Cleveland, Proc. Neutrino Conf., Purdue (1978).

    Google Scholar 

  26. S.E. Willis et al., Phys. Rev. Lett. 44:522 (1980).

    Article  ADS  Google Scholar 

  27. J. Blietschau et al., Nucl. Phys. B133:205 (1978).

    Article  ADS  Google Scholar 

  28. A.M. Cnops et al., Phys. Rev. Lett. 40:144 (1978).

    Article  ADS  Google Scholar 

  29. B.P. Roe (FIMS collaboration) private communication (1980).

    Google Scholar 

  30. T. Kondo et al., FERMILAB-preprint, Conf.-80/92-EXP (1980).

    Google Scholar 

  31. H. Deden et al., Phys. Lett. 98B:310 (1981).

    ADS  Google Scholar 

  32. N. Armenise et al., CERN preprint EP/80–226 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Perkins, D.H. (1983). Baryon Stability and Neutrino Oscillations. In: Ellis, J., Ferrara, S. (eds) Unification of Fundamental Particle Interactions II. Ettore Majorana International Science Series, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9299-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9299-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9301-0

  • Online ISBN: 978-1-4615-9299-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics