Skip to main content

Intracellular Recording of Potassium in Neurons of the Motor Cortex of Awake Cats Following Extracellular Applications of Acetylcholine

  • Chapter

Abstract

Acetylcholine (ACh) is known to affect about half of the neurons of the cat motor cortex by causing an increase in the spontaneous rate of firing and input resistance (Krnjević et al, 1971; Woody et al, 1976; Woody et al, 1978). These effects can be prevented by local application of atropine, a muscarinic blocking agent (Swartz and Woody, 1979). The cells that respond in this way include pyramidal cells of Layer V, the neurons whose axons form the pyramidal tract (Crawford and Curtis, 1966; Krnjević and Phillis, 1963 a, b; Naito et al, 1969; Sakai and Woody, 1980; Spehlmann and Smathers, 1974).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crawford, J.M.,and Curtis, D.R., 1966, Pharmacological studies on feline Betz cells, J. Physiol. (Lond.), 186:121.

    PubMed  CAS  Google Scholar 

  • Goldman, D.E., 1943, Potential, impedance, and rectification in membranes, J. Gen. Physiol., 27: 37.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, E.,and Lux, H.D., 1973, Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow, J. Gen. Physiol., 61:385.

    Article  Google Scholar 

  • Hodgkin, A.L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (Lond.)108: 37.

    PubMed  CAS  Google Scholar 

  • Krnjević, K. and Phillis, J.W., 1963(a), Acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lond.), 166:296.

    PubMed  Google Scholar 

  • Krnjević, K.,and Phillis, J.W., 1963Cb), Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lond.), 166:328.

    Google Scholar 

  • Krnjević, K., Pumain, R.,and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol., 215:247.

    PubMed  Google Scholar 

  • Naito, H., Nakamura, K., Kurosaki, T., and Tamura, Y., 1969, Precise location of fast and slow pyramidal tract cells in cat sensorimotor cortex, Br. Res., 14:237.

    Article  CAS  Google Scholar 

  • Sakai, H.,and Woody, C., 1980 (in press), Identification of auditory responsive cells in coronal-pericruciate cortex of awake cats, J. Neurophysi.p.

    Google Scholar 

  • Spehlmann, R.,and Smathers, C.C., Jr., 1944, The effects of acetylcholine and of synaptic stimulation on the sensorimotor cortex of cats. II. Comparison of the neuronal responses to reticular and other stimuli, Br. Res., 74:243.

    Article  Google Scholar 

  • Swartz, B.,and Woody, C., 1979, Correlated effects of acetylcholine and cyclic guanosine monophosphate on membrane properties of mammalian neocortical neurons, J. Neurobio., 10:465.

    Article  CAS  Google Scholar 

  • VyskoČil, F.,and Kříž, N., 1972, Modifications of single and double-barrel potassium specific micro-electrodes for physiological experiments, Pflügers Arch., 377:265.

    Article  Google Scholar 

  • Weight, F.F.,and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance, Scienc., 170:755.

    Article  CAS  Google Scholar 

  • Wong, B., and Woody, C., 1978, Recording intracellularly with potassium ion-sensitive electrodes from single cortical neurons in awake cats, Exp. Neuro., 61:219.

    Article  CAS  Google Scholar 

  • Woody, C.D., Carpenter, D.O., Gruen, E., Knispel, J.D., Crow, T.W., Black-Cleworth, P., February 1976, Persistent increases in membrane resistance of neurons in cat motor cortex, AFRRI Scientific Repor., 1.

    Google Scholar 

  • Woody, C.D., Swartz, B.E.,and Gruen, E. 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Br. Res., 158:373.

    Article  CAS  Google Scholar 

  • Woody, C.D., Sakai, H., Swartz, B., Sakai, M.,and Gruen, E., 1979, Responses of morphologically identified mammalian, neocortical neurons to acetylcholine (ACh), aceclidine (ACec), and cyclic GMP (cGMP), Soc. Neurosci. Abst., 5:601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Woody, C.D., Wong, B. (1981). Intracellular Recording of Potassium in Neurons of the Motor Cortex of Awake Cats Following Extracellular Applications of Acetylcholine. In: Syková, E., Hník, P., Vyklický, L. (eds) Ion-Selective Microelectrodes and Their Use in Excitable Tissues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9224-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9224-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9226-6

  • Online ISBN: 978-1-4615-9224-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics