Skip to main content

Cell Inactivation and Mutagenesis by Solar Ultraviolet Radiation

  • Chapter
Trends in Photobiology

Abstract

The spectrum of solar radiation that reaches the earth’s surface ranges from the highly energetic ultraviolet (UV) with wavelengths as short as 290–295 nm, through the near-UV region into the visible and infra-red regions. This presentation is concerned with the effects of solar-UV (290’380 nm), and where general terminology is inadequate, the specific wavelengths employed will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisenstark, A. (1971) in Advances in Genetics, Vol. 12 (E. W. Caspari, ed. ) pp. 167–198, Academic Press, New York.

    Google Scholar 

  2. Webb, R. B. (1977) in Photochemical and Photobiological Re view, vol. 2 (K.C. Smith, ed. ) pp. 169–261, Plenum Press, New York.

    Google Scholar 

  3. Tyrrell, R. M. (1978a) in International Symposium on Current Topics in Radiobiology and Photobiology (R. M. Tyrrell, ed. ) pp. 73–80, Academia Brasileira de Ciências, Rio de Janeiro.

    Google Scholar 

  4. Ramabgadran, T. V. and J. Jagger (1976) Proc. Natl. Acad. Sci. US 73:59–63

    Article  Google Scholar 

  5. Thomas, G. and A. Favre (1975) Biochem. Biophys. Res. Commun. 66: 1454–1461.

    Article  Google Scholar 

  6. Kashkett, E.R. and A. F. Brodie (1962) J. Bacteriol. 83:1094–1100.

    Google Scholar 

  7. Tyrrell, R.M. (1973) Photochem. Photobiol. 17:69–73.

    Article  Google Scholar 

  8. Tyrrell, R. M., R. D. Leyand R. B. Webb (1974) Photochem. Photobiol. 20:395–398.

    Article  Google Scholar 

  9. Cerutti, P. and Netrawali, M. (1979) in Proceedings of the Sixth International Congress of Radiation Research (ed.S. Okada, M. Inamura, T. Terashima and H. Yamaguchi) pp. 423–431, Tokyo, Japan.

    Google Scholar 

  10. Tyrrell, R.M. (1978d) Photochem. Photobiol. 27:571–579.

    Article  Google Scholar 

  11. Bradley, M. O., Hsu, C. and C. C. Harris, Nature (in press).

    Google Scholar 

  12. Cabrera-Juarez, E. and J. K. Setlow (1977) Biochim. Biophys. Acta 475:315–322

    Google Scholar 

  13. Brown, M. S. and R. B. Webb (1972) Mutat. Res. 15:348–352.

    Article  Google Scholar 

  14. Tyrrell, R. M. (1976) Photochem. Photobiol. 23:13–20.

    Article  Google Scholar 

  15. Tuveson, R. W. and Jonas, R. B. (1979) Photochem. Photobiol.30:667–677.

    Article  Google Scholar 

  16. Ley, R. D., Sedita, B. A. and E. Boye (1978) Photochem.Photobiol. 27:323–329.

    Article  Google Scholar 

  17. Town, C. D., R. C. Smith and H. S. Kaplan (1 973) Cur. Topics Radiat. Res. Quart. 8:351–399.

    Google Scholar 

  18. Rupert, C.S. and W. Harm (1966) in Advances in Radiation Biology, Vol. 2 (L. G. Augenstein, R. Mason and M. Zelle, ed.) pp. 1–81, Academic Press, New York.

    Google Scholar 

  19. Tyrrell, R.M. (1979a) Photochem. Photobiol. 29:963–970.

    Article  Google Scholar 

  20. Tyrrell, R. M. (1978b) in Photochemical and Photobiological Reviews, vol. 3 (K. C. Smith, ed. ) pp. 35–113, Plenum, New York.

    Google Scholar 

  21. Bridges, B. A., R. E. Dennis and R. J. Munson (1967) Genetics 57:897–908.

    Google Scholar 

  22. Demerec, M. and E. Cahn (1953) J. Bacteriol. 65:27–36.

    Google Scholar 

  23. Tyrrell, R.M. (1980) Photochem. Photobiol. 31:37–47.

    Article  Google Scholar 

  24. Tyrrell, R.M. (1978c) Mutation Res. 52:25–35.

    Article  Google Scholar 

  25. Witkin, E. M. (1976) Bacteriol. Rev. 40:869–907.

    Google Scholar 

  26. Jagger, J., W. Curtis-Wise and R. Stafford (1964) Photochem. Photobiol. 3:11–24.

    Article  Google Scholar 

  27. Robertson, D. F. (1972) PhD thesis, Queensland University, Australia.

    Google Scholar 

  28. Munakata, N. (1974) J. Bacteriol. 120:59–65.

    Google Scholar 

  29. Ashwood-Smith, M. J., Copeland, J. and J. Wilcockson (1967).Nature (London) 214:33–3 5.

    Article  Google Scholar 

  30. Jagger, J. (1975) Photochem. Photobiol. 22:67–70.

    Article  Google Scholar 

  31. Tyrrell, R. M. (1979b) Biochem. Biophys. Res. Comm. 91: 1406–1415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Tyrrell, R.M. (1982). Cell Inactivation and Mutagenesis by Solar Ultraviolet Radiation. In: Hélène, C., Charlier, M., Montenay-Garestier, T., Laustriat, G. (eds) Trends in Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9203-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9203-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9205-1

  • Online ISBN: 978-1-4615-9203-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics