Possible Photoregulation by Flavoproteins

  • Vincent Massey
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 33)


A wide variety of biological phenomena are blue light-dependent, responding to light of wavelengths below 500 nm. This topic has been the subject of many review articles; a recent one by Schmidt (1) is particularly useful, both in its description of the phenomena and in exploring the basis of the possible molecular mechanisms involved. Many individual examples of blue light photoreception will be dealt with in detail at this meeting; I will simply list here those examples where action spectra permit a reasonable conclusion about the nature of the photoreceptor. There now seems to be general agreement that flavin is the blue light photoreceptor (1). This conclusion is based on several lines of evidence. The action spectra of most blue light dependent biological phenomena show a prominent band around 450 nm, often with a distinct shoulder in the region of 470-480 nm. This spectral characteristic is shared by two classes of widely spread biological compounds, flavins and carotenes. In addition most action spectra also exhibit a near-UV band, in the region of 350 nm. There is however much less consistency about the shape, position and “intensity” of this band, a fact chiefly responsible for the past uncertainty about whether flavin or carotene is the blue light photoreceptor. Flavins do possess such an absorption band, as does cis-ß-carotene. However trans-ß-carotene does not, and the biological occurrence of cis-ß-carotene is apparently quite rare. Particularly important is the failure to detect this form in one of the archetypal organisms exhibiting blue light photoresponse, Phycomyces (2). Another important piece of evidence is that carotene-deficient mutants of various biological species generally exhibit the same blue light responses as the wild types (3-5). Finally while carotene is present in high concentrations in the growing avena coleoptile, it has been shown by microchemical techniques to be absent from the apex, which is the most photosensitive zone of the coleoptile (6).


Methylene Blue Action Spectrum Biological Phenomenon Heme Protein Glycollate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Schmidt, Structure and Bonding (in press) (1979).Google Scholar
  2. 2.
    D. Presti, W.-J. & M. Delbrück, Photochem. Photobiol. 26:403 (1977).CrossRefGoogle Scholar
  3. 3.
    M. L. Sargent & W. R. Briggs, Plant Physiol. 42:1504 (1967).CrossRefGoogle Scholar
  4. 4.
    W. E. Zimmerman & T. H. Goldsmith, Science 171:1167 (1971).CrossRefGoogle Scholar
  5. 5.
    E. Klemm & H. Ninnemann, Photochem. Photobiol. 24:369 (1976).CrossRefGoogle Scholar
  6. 6.
    E. Bünning, Planta 26:719 (1937).CrossRefGoogle Scholar
  7. 7.
    G. M. Curry & H. E. Gruen, Proc.Natl.Acad.Sci.USA 45:797 (1959).CrossRefGoogle Scholar
  8. 8.
    M. Delbrück & W. Shrophire Jr. Plant Physiol. 35:194 (1960).CrossRefGoogle Scholar
  9. 9.
    M. Delbrück, A. Katzir & D. Presti, Proc. Natl.Acad. Sci. 37: 1969 (1976).CrossRefGoogle Scholar
  10. 10.
    R. M. Page & G. M. Curry, Photochem. Photobiol. 5:31 (1966).CrossRefGoogle Scholar
  11. 11.
    M. Everett & K, V. Thimann, Plant Physiol. 43:1786 (1968).CrossRefGoogle Scholar
  12. 12.
    G. M. Curry, Ph. D. Thesis, Harvard University, Cambridge, Mass. (USA) (1957).Google Scholar
  13. 13.
    B. Diehn, Biochim. Biophys. Acta 177:136 (1969).CrossRefGoogle Scholar
  14. 14.
    E. C. De Fabo, R. W. Harding & W. Shrophire Jr., Plant Physiol. 57:440 (1976).CrossRefGoogle Scholar
  15. 15.
    C. D. Howes & P.P. Batra, Arch. Biochem. Biophys. 137:175 (1970).CrossRefGoogle Scholar
  16. 16.
    W. Rau, Planta 72:14 (1967).CrossRefGoogle Scholar
  17. 17.
    J. Zurzycki, Acta Soc. Bot. Pol. 39:483 (1970).Google Scholar
  18. 18.
    J. M. Pickett & C. S. French, Proc.Natl.Acad.Sci.US. 57:1587 (1967).CrossRefGoogle Scholar
  19. 19.
    G. Brinkman & H. Senger, Plant and Cell Physiol. 19:1427 (1978).Google Scholar
  20. 20.
    H. Mohr, Planta 47:127 (1956).CrossRefGoogle Scholar
  21. 21.
    A. M. Steiner, Naturwissensch. 18:497 (1967).Google Scholar
  22. 22.
    K. G. Bruce & D. H. Minis, Science 163:583 (1969).CrossRefGoogle Scholar
  23. 23.
    J. Zurzycki, Acta Protozoologica 11:189 (1972).Google Scholar
  24. 24.
    P. S. Song & T. A. Moore, Photochem. Photobiol. 19:435 (1974).CrossRefGoogle Scholar
  25. 25.
    L. F. Jaffe, Exp. Cell Research 15:282 (1958).CrossRefGoogle Scholar
  26. 26.
    E. S. Castle, J. Gen. Physiol. 17:751 (1934).CrossRefGoogle Scholar
  27. 27.
    A. J. Jesaitis, J. Gen. Physiol. 63:1 (1974).CrossRefGoogle Scholar
  28. 28.
    F. Mayer, Z. Bot. 52:346 (1964).Google Scholar
  29. 29.
    W. Shropshire, Jr., Science 130:336 (1959).CrossRefGoogle Scholar
  30. 30.
    L. Jaffe & H. Etzold, J. Cell Biol. 13:13 (1962).CrossRefGoogle Scholar
  31. 31.
    R. G. Matthews, V. Massey & C. C. Sweeley, J. Biol. Chem. 250:9294 (1975).Google Scholar
  32. 32.
    A. S. Abramovitz & V. Massey, J. Biol. Chem. 251:5329 (1976).Google Scholar
  33. 33.
    L. P. Vernon, Biochim. Biophys. Acta 36:177 (1959).CrossRefGoogle Scholar
  34. 34.
    W. R. Frisell, C. W. Chung & C.G. Mackenzie, J. Biol. Chem. 234:1297 (1959).Google Scholar
  35. 35.
    G. R. Penzer & G. K. Radda, Biochem. J. 109:259 (1968).Google Scholar
  36. 36.
    P. Hemmerich, V. Massey & G. Weber, Nature 213:728 (1967).CrossRefGoogle Scholar
  37. 37.
    W. Haas & P. Hemmerich, Biochem. J. 181:95 (1979).Google Scholar
  38. 38.
    M. Zalonkar, Arch. Biochem. Biophys. 50:71 (1974).CrossRefGoogle Scholar
  39. 39.
    H. C. Rilling, Biochim. Biophys. Acta 60:548 (1962).CrossRefGoogle Scholar
  40. 40.
    R. R. Theimer W. Rau, Planta 92:129 (1970).CrossRefGoogle Scholar
  41. 41.
    W. Rau, B. Feuser & A. Rau-Hund, Biochim. Biophys. Acta 136: 589 (1967).CrossRefGoogle Scholar
  42. 42.
    V. Massey, M. Stankovich & P. Hemmerich, Biochemistry 17:1 (1978).CrossRefGoogle Scholar
  43. 43.
    V. Massey, S. Strickland, S. G. Mayhew, L. G. Howell, P. C. Engel, R. G. Matthews, M. Schuman & P. A. Sullivan, Biochem. Biophys. Res. Comm. 36:891 (1969).CrossRefGoogle Scholar
  44. 44.
    J. A. Fee, in “IS0X III”, T. E. King, H. S. Mason & M. Morrison, eds., University Park Press, Baltimore (in press) (1979).Google Scholar
  45. 45.
    D. S. Berns & J. R. Vaughn, Biochem. Biophys. Res. Comm. 39: 1094 (1970).CrossRefGoogle Scholar
  46. 46.
    K. L. Poff & W. L. Butler, Nature 248:799 (1974).CrossRefGoogle Scholar
  47. 47.
    E. D. Lipson & D. Presti, Photochem. Photobiol. 25:203 (1977).CrossRefGoogle Scholar
  48. 48.
    V. Muñoz & W. L. Butler, Plant Physiol. 55:421 (1975).CrossRefGoogle Scholar
  49. 49.
    S. Widell, J. Britz & W. R. Briggs, Carnegie Institution Year Book 77:344 (1978).Google Scholar
  50. 50.
    M. H. M. Goldsmith & W. R. Briggs, Carnegie Institution Year Book 77:347 (1978).Google Scholar
  51. 51.
    W. H. Walker, P. Hemmerich & V. Massey, Eur. J. Biochem. 13: 258 (1970).CrossRefGoogle Scholar
  52. 52.
    S. Ghisla, V. Massey, J.-M. Lloste & S. G. Mayhew, Biochemistry 13:589 (1974).CrossRefGoogle Scholar
  53. 53.
    W. Schmidt, J. Hart, P. Filner & K. L. Poff, Plant Physiol. 60:736 (1977).CrossRefGoogle Scholar
  54. 54.
    F. Müller & V. Massey, J. Biol.Chem. 244:4007 (1969).Google Scholar
  55. 55.
    V. Massey, F. Müller, R. Feldberg, M. Schuman, P. A. Sullivan, L. G. Howell, S. G. Mayhew, R. G. Matthews & G. P. Foust, J. Biol. Chem. 244:3999 (1969).Google Scholar
  56. 56.
    S. Ghisla & V. Massey, J. Biol. Chem. 250:577 (1975).Google Scholar
  57. 57.
    S. Ghisla, V. Massey & Y. S. Choong, J. Biol. Chem. (in press) (1979).Google Scholar
  58. 58.
    P. Hemmerich, in “Progress in the Chemistry of Organic Natural Products”, W. Herz, H. Grisbach & G. W. Kirby, eds., Springer Verlag, Vienna (1976).Google Scholar
  59. 59.
    W. Kowallik, Plant Physiol. 42:672 (1967).CrossRefGoogle Scholar
  60. 60.
    J. Lang-Feulner & W. Rau, Photochem. Photobiol. 21:179 (1975).CrossRefGoogle Scholar
  61. 61.
    D. E. Edmondson & T. P. Singer, FEBS Lett. 64:255 (1976).CrossRefGoogle Scholar
  62. 62.
    D. J. Steenkamp, W. McIntire & W. C. Kenney, J. Biol. Chem. 253:2818 (1978).Google Scholar
  63. 63.
    S. Kasai, R. Miura & K. Matsui, Bull. Chem. Soc. Japan 48:2877 (1975).CrossRefGoogle Scholar
  64. 64.
    G. Blankenhorn, Eur. J. Biochem. 82:155 (1978).CrossRefGoogle Scholar
  65. 65.
    S. G. Mayhew, C.D. Whitfiled, S. Ghisla & M. Schuman-Jorns, Eur. J. Biochem. 44:579 (1974).CrossRefGoogle Scholar
  66. 66.
    S. Ghisla & S. G. Mayhew, Eur. J. Biochem. 63:373 (1976).CrossRefGoogle Scholar
  67. 67.
    S. Ghisla, V. Massey & S. G. Mayhew, in “Flavins and Flavopro-teins”, T. P. Singer, ed., Elsevier, Amsterdam (1976).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Vincent Massey
    • 1
  1. 1.Department of Biological ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations