Skip to main content

HD Formation by Nitrogenase: A Probe for N2 Reduction Intermediates

  • Chapter
Molybdenum Chemistry of Biological Significance

Abstract

Nitrogenase is a complex of two separately purifiable proteins, the molybdenum-iron protein [MoFe] and the iron protein [Fe].1,2 In addition to catalyzing the reduction of N2 to ammonia, nitro genase has ATP-hydrolyzing activity,3 ATP-dependent H2-evolution activity,4 and supports a reaction between D2 and protons (from H2O) to form HD.5 In the absence of other substrates, all the reductant consumed is used to reduce protons to H2. When N2 is added as a substrate, an apparent maximum of 75% of the electrons reduce N2 while the remainder still reduce protons.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. Bulen and J.R. LeComte, The nitrogenase system from Azotobacter: Two enzyme requirement for N2 reduction, ATP dependent H2 evolution and ATP hydrolysis, Proc. Acad. Sci. USA 56:979 (1966).

    CAS  Google Scholar 

  2. L.E. Mortenson, Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and for N2 fixation, Biochim. Biophys. Acta127:18 (1966).

    Article  PubMed  CAS  Google Scholar 

  3. M.J. Dilworth, D. Subramanian, T.O. Munson and R.H. Burris,The adenosine triphosphate requirement for nitrogen fixation in cell-free extracts of Clostridium pasteurianum, Biochim. Biophys. Acta 99:486 (1965).

    PubMed  CAS  Google Scholar 

  4. W.A. Bulen, R.C. Burns and J.R. LeComte, Hydrosulfite as elec tron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirilium rubrum, Proc. Nat. Acad. Sci. USA 53:532 (1965).

    Article  PubMed  CAS  Google Scholar 

  5. G.E. Hoch, K.C. Schneider and R.H. Burris, Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules, Biochim. Biophys. Acta 37:273 (1960)

    Article  PubMed  CAS  Google Scholar 

  6. J.M. Rivera-Ortiz and R.H. Burris, Interaction among substrates and inhibitors of nitrogenase, J. Bacteriol. 123:537 (1975).

    PubMed  CAS  Google Scholar 

  7. P.W. Wilson and W.W. Umbreit, Symbiotic nitrogen fixation.III. Hydrogen as a specific inhibitor, Arch. Mikrobiol. 8:440 (1937).

    Article  CAS  Google Scholar 

  8. G.W. Strandberg and P.W. Wilson, Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii, Can. J. Microbiol. 14:25 (1967).

    Article  Google Scholar 

  9. K.L. Hadfield and W.A. Bulen, Adenosine triphosphate requirements of nitrogenase from Azotobacter vinelandii, Biochemistry8: 5103 (1969)

    Article  PubMed  CAS  Google Scholar 

  10. J.C. Hwang, C.H. Chen and R.H. Burris, Inhibition of nitrogenase catalyzed reductions, Biochim. Biophys. Acta 292:256 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. F.J. Bergersen, The relationship between hydrogen evolution,hydrogen exchange, nitrogen fixation and applied oxygen tension of soybean root nodules, Aust. J. Biol. Sci. 16:669 (1963).

    CAS  Google Scholar 

  12. E.K. Jackson, G.W. Parshall and R.W.F. Hardy, Hydrogen reactions of nitrogenase: Formation of the molecule HD by nitrogenase and an inorganic model, J. Biol. Chem. 19:4952 (1968).

    Google Scholar 

  13. R.C. Burns and W.A. Bulen, ATP-dependent hydrogen evolution by cell-free preparations of Azotobacter vinelandii, B Jochim. Biophys. Acta 105:437 (1965).

    CAS  Google Scholar 

  14. G.L. Turner and F.J. Bergerson, The relationship between N2~fixation and the production of HD from D2 by cell-free extracts of soybean nodule bacteroids, Biochem. J. 115:529 (1969).

    PubMed  CAS  Google Scholar 

  15. M. Kelly, Hydrogen-deuterium exchange reactions catalyzed by nitrogenase, Biochem. J. 109:322 (1968).

    PubMed  CAS  Google Scholar 

  16. M. Kelly, Comparison and cross reactions of nitrogenase from Klebsiella penumoniae, Azotobacter chroococcum and Bacillus polymyxa, Biochim. Biophys. Acta 191:527 (1969).

    CAS  Google Scholar 

  17. W.A. Bulen, Nitrogenase from Azotobacter vinelandii and reactions affecting mechanistic interpretation, in “Proc. 1st Int. Symp. on Nitrogen Fixation”, W.E. Newton and C.J. Nyman, eds., Washington State University Press, Pullman, Wash. (1976) p. 177.

    Google Scholar 

  18. W.E. Newton, W.A. Bulen, K.L. Hadfield, E.I. Stiefel and G.D. Watt, HD formation as a probe for intermediates in N2 reduction, in “Recent Developments in Nitrogen Fixation”, W.E. Newton, J.R. Postgate and C. Rodriguez-Barrueco, eds. Academic Press, London, New York. (1978) p. 119.

    Google Scholar 

  19. W.A. Bulen and J.R. LeComte, Nitrogenase complex and its components, in “Methods in Enzymology”, A. San Pietro, ed., Academic Press, New York, London. (1972) Vol. XXIV, Part B p. 456.

    Google Scholar 

  20. W.E. Newton, J.L. Corbin and J.W. McDonald, Nitrogenase: Mechanism and Models, in, “Proc. 1st Int. Symp. on Nitrogen Fixation”, W.E. Newton and C.J. Nyman, eds., Washington State University Press, Pullman, Wash. (1976) p. 53.

    Google Scholar 

  21. E.I. Stiefel, W.E. Newton, G.D. Watt, K.L. Hadfield and W.A. Bulen, Molybdoenzymes: The role of electrons, protons and dihydrogen, in, “Bio-inorganic Chemistry II”, K.N. Raymond, eds., Advances in Chemistry Series No. 162, American Chemical Society Publications, Washington D.C. (1977) p. 353.

    Google Scholar 

  22. B.K. Burgess, D. Jacobs and E.I. Stiefel, Azotobacter vinelandiinitrogenase: Large-scale, anaerobic, high-yield, highactivity preparation using modified Schlenk techniques, submitted for publication.

    Google Scholar 

  23. E.I. Stiefel, B.K. Burgess, S. Wherland, W.E. Newton, J.L. Corbin and G.D. Watt, Azotobacter vinelandii Biochemistry: H2(D2)/N2 relationships of nitrogenase and some aspects of iron metabo lism, ±n “Nitrogen Fixation”, W.E. Newton and W.H. Orme-Johnson, eds., University Park Press, Baltimore (1979) in press.

    Google Scholar 

  24. G.D. Watt and A. Burns, Kinetics of dithionite ion utilization and ATP hydrolysis for reactions catalyzed by the nitrogenase complex from Azotobacter vinelandii, Biochemistry 16:265 (1977).

    Article  Google Scholar 

  25. E.I. Stiefel, The mechanisms of nitrogen fixation in, “Recent Developments in Nitrogen Fixation”, W.E. Newton, J.R. Postgate and C. Rodriguez-Barrueco, eds., Academic Press, London (1978) p. 69.

    Google Scholar 

  26. R.N.F. Thorneley, R.R. Eady and D.J. Lowe, Biological nitrogen fixation by way of enzyme-bound dinitrogen-hydride inter mediate, Nature 272:557 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Burgess, B.K., Wherland, S., Stiefel, E.I., Newton, W.E. (1980). HD Formation by Nitrogenase: A Probe for N2 Reduction Intermediates. In: Newton, W.E., Otsuka, S. (eds) Molybdenum Chemistry of Biological Significance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9149-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9149-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9151-1

  • Online ISBN: 978-1-4615-9149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics