Skip to main content

Electrochemistry of Molybdenum Complexes. Effect of Structure and Solution Environment on Redox Properties

  • Chapter
Molybdenum Chemistry of Biological Significance

Abstract

The occurrence of molybdenum in at least six metalloenzymes having redox function (nitrogenase, nitrate reductase, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and formate dehydrogenase)1 has created a need for greater understanding of the oxidation-reduction chemistry of this element. This realization prompted us to begin an investigation of electrochemical behavior of suitable inorganic i.e., model) molybdenum complexes with the expectation that the results would be useful in interpreting the redox behavior of this element in its various enzymes. A number of important questions can be addressed using contemporary electro chemical techniques such as cyclic voltammetry, potential step electrolysis, and controlled potential coulometry. These questions include: (1) whether electron transfer into the molybdenum center occurs by multiple steps involving a single electron or by a single multi-electron step; (2) the redox potentials of the electron transfer steps; (3) whether electron transfer leads to species with unusual stability or reactivity; and (4) the extent to which processes in (1)–(3) are influenced by molecular structure and solution environment. Trends have emerged with important implications for the redox properties of molybdoenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. I. Stiefel, The coordination and bioinorganic chemistry of molybdenum, Progr. Inorg. Chem., 22:1 (1977).

    Article  CAS  Google Scholar 

  2. S. P. Cramer, L. O. Hodgson, W. O. Gillum, and L. E. Mortenson, The molybdenum site of nitrogenase. Preliminary structural information from x-ray absorption spectroscopy, J. Amer. Chem. Soc., 100:3398 (1978).

    Article  CAS  Google Scholar 

  3. S. P. Cramer, H. B. Gray, and K. V. Rajagopalan, The molybdenum site of sulfite oxidase. Structural information from x-ray absorption spectroscopy, J. Amer. Chem. Soc., 101:2772 (1979).

    Article  CAS  Google Scholar 

  4. T. D. Tullius, D. M. Kurtz, Jr., S. D. Conradson, and K. 0. Hodgson, The molybdenum site of xanthine oxidase. Structural evidence from x-ray absorption spectroscopy, J. Amer. Chem. Soc., 101:2776 (1979).

    Article  CAS  Google Scholar 

  5. F. A. Schultz, V. R. Ott, D. S. Rolison, D. C. Bravard, J. W. McDonald, and W. E. Newton, Synthesis and electrochemistry of oxo-and sulfido-bridged molybdenum(V) complexes with 1,1-dithiolate ligands, Inorg. Chem., 17:1758 (1978).

    Article  CAS  Google Scholar 

  6. F. A. Schultz, V. R. Ott, and D. S. Swieter, Di-µ-oxo, µ-oxo µ-sulfido, and di-µ-sulfido complexes of molybdenum(V) with EDTA, cysteine, and cysteine ester ligands. Preparation and electrochemical and spectral properties, Inorg. Chem., 16:2538 (1977).

    Article  Google Scholar 

  7. M. R. DuBois, Synthesis and characterization of a series of thiobenzoate complexes of molybdenum(V), Inorg. Chem., 17:2405 (1978).

    Article  CAS  Google Scholar 

  8. J. K. Howie and D. T. Sawyer, Electrochemical studies of oxo and sulfido-bridged binuclear molybdenum(V) complexes in aprotic media, Inorg. Chem., 15:1892 (1976).

    Article  CAS  Google Scholar 

  9. J. Hyde, K. Venkatasubramanian, and J. Zubieta, Synthesis and chemical and structural investigation of molybdenum(IV) thioxanthate complexes. An unusual example of η3 coordination for a dithio acid ligand, Inorg. Chem., 17:414 (1978).

    Article  CAS  Google Scholar 

  10. H. C. Faulkner III, Electrochemical studies of oxo-and sulfidobridged molybdenum(V) dimers, J. Electrochem. Soc.,l25:287C (1978).

    Article  Google Scholar 

  11. G. Bunzey, J. H. Enemark, J. K. Howie, and D. T. Sawyer, Molybdenum complexes of aliphatic thiols. Isolation and characterization of two isomeric forms of the redox active binuclear Mo(V) anion, [Mo2S4(S2C2H4)2]2 , J.. Amer. Chem. Soc., 99:4168 (1977).

    Article  CAS  Google Scholar 

  12. D. H. Brown, P. G. Perkins, and J. J. Stewart, The electronic states of the dioxo-di-µ-oxo-dimolybdate(V) group, J. Chem. Soc., Dalton Trans., 1105 (1972).

    Google Scholar 

  13. D. H. Brown and P. G. Perkins, The electronic structure and spectra of the di-µ-sulfido-bis[oxo-(L-cysteinato)molybdate (V)]2 ion, Rev. Roum. Chem., 20:515 (1975).

    CAS  Google Scholar 

  14. J. Hyde and J. Zubieta, Preparation and characterization of tetrakis (thioxanthato)molybdenum(IV) complexes, J. Inorg. Nucl. Chem., 39:289 (1977).

    Article  CAS  Google Scholar 

  15. V. R. Ott and F. A. Schultz, Electrochemical reduction of a binuclear dioxo-bridged molybdenum(V) complex with ethyl enediaminetetraacetate, J. Electroanal. Chem., 59:47 (1975).

    Article  CAS  Google Scholar 

  16. V. R. Ott and F. A. Schultz, Electrochemical reduction of a binuclear dioxo-bridged molybdenum(V) complex with cysteine, J. Electroanal. Chem., 61:81 (1975).

    Article  CAS  Google Scholar 

  17. F. A. Schultz, D. A. Ledwith, and L. O. Leazenbee, Electrochemically catalyzed reduction of nitrogenase substrates by binuclear molybdenum(V) complexes. ACS Symp. Ser., 38:78 (1977).

    Article  CAS  Google Scholar 

  18. D. A. Ledwith and F. A. Schultz, Catalytic electrochemical reduction of acetylene in the presence of a molybdenumcysteine complex, J. Amer. Chem. Soc., 97:6591 (1975).

    Article  CAS  Google Scholar 

  19. E. I. Stiefel, Proposed molecular mechanism for the action of molybdenum in enzymes: coupled proton and electron transfer, Proc. Nat. Acad. Sci. USA, 70:988 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. G. G. Kneale, A. J. Geddes, Y. Sasaki, T. Shibahara, and A. G. Sykes, Preparation and crystal structure of potassium salt of the binuclear molybdenum(III) complex, µ-acetato-di-µ-hydroxo-µ(NN’)ethylenediaminetetraacetato-bis[molybdenum(III)], K[Mo2(OH)2(O2CMe)(C10H12O8N2)], J. Chem. Soc., Chem. Commun., 356 (1975).

    Google Scholar 

  21. T. Ramasami and A. G. Sykes, Further characterization and aquation of the thiolopentaaquochromium(III) complex, CrSH2+, and its equilibration with thiocyanate, Inorg. Chem., 15:1010 (1976).

    Article  CAS  Google Scholar 

  22. L. E. Asher and E. Deutsch, Effect of added ligands on the rate of chromium-sulfur bond fission in thiolatopentaaquochromium complexes. Evidence for a sulfur-induced trans effect in chromium(III) chemistry, Inorg. Chem., 15:1531 (1976).

    Article  CAS  Google Scholar 

  23. F. A. Armstrong, T. Shibahara, and A. G. Sykes, Effect of µ-sulfido ligands on substitution at molybdenum(V). A temperature-jump study of the 1:1 equilibration of thiocyanate with di-µ-sulfido-bis[aquooxalatooxomolybdenum(V)], Inorg. Chem., 17:189 (1978).

    Article  CAS  Google Scholar 

  24. J. A. McCleverty, Metal 1, 2-dithiolene and related complexes, Progr. Inorg. Chem., 10:49 (1968).

    Article  CAS  Google Scholar 

  25. A. Nieuwpoort and J. J. Steggerda, Eight-coordinated 1,1-dithio ligand complexes of molybdenum and tungsten, Rec. Trav. Chim., 95:250 (1976).

    Article  CAS  Google Scholar 

  26. F. A. Schultz and W. E. Newton, unpublished work.

    Google Scholar 

  27. J. Zelinka, M. Bartusek, and A. Okac, Polarography of o-diphenol chelates of molybdenum, Coll. Czech. Chem. Commun., 38:2898 (1973).

    CAS  Google Scholar 

  28. L. M. Charney and F. A. Schultz, manuscript in preparation.

    Google Scholar 

  29. L. M. Charney, H. O. Finklea, and F. A. Schultz, manuscript in preparation.

    Google Scholar 

  30. V. V. Trachevskii and V. V. Lukachina, Interaction of molybdenum(V) with pyrogallol, pyrocatechol, and tiron in aqueous medium, Zh. Neorg. Khim., 21:117 (1976).

    CAS  Google Scholar 

  31. M. Ardon and A. Pernick, Molybdenum(IV) in aqueous solution, J. Amer. Chem. Soc., 95:6871 (1973).

    Article  CAS  Google Scholar 

  32. T. Ramasami, R. S. Taylor, and A. G. Sykes, The monocluear nature of aquomolybdenum(IV) ion in solution, J. Amer. Chem. Soc. 97:5918 (1975).

    Article  CAS  Google Scholar 

  33. M. Lamache, Existence and properties of Mo(IV) in aqueous solution, J. Less-Common Metals, 39:179 (1975).

    Article  CAS  Google Scholar 

  34. P. Chalilpoyil and F. C. Anson, Electrochemical properties of aquomolybdenum ions in noncomplexing acidic electrolytes, Inorg. Chem., 17:2418 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Schultz, F.A. (1980). Electrochemistry of Molybdenum Complexes. Effect of Structure and Solution Environment on Redox Properties. In: Newton, W.E., Otsuka, S. (eds) Molybdenum Chemistry of Biological Significance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9149-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9149-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9151-1

  • Online ISBN: 978-1-4615-9149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics