Skip to main content

Electrochemical and Spectroscopic Studies of Molybdenumcatechol Complexes: Models for Molybdoenzymes and Biological Transport

  • Chapter
Molybdenum Chemistry of Biological Significance

Abstract

The chemistry of molybdenum is important because of its involvement in a variety of biological processes. Although present in trace quantities, molybdenum is cru cial for..the activity of at2least five enzymes:3 xanthine oxidase,4 aldehyde oxidase, nitrate reductase, sulphite oxidase, and nitrogenase.5 All of these enzymes catalyze redox-type chemical reactions which involve the transfer of two or more electrons per substrate molecule. Electron paramagnetic resonance (EPR) studies1–3,6–8 indicate that, in all but nitrogenase, the molybdenum undergoes oxidation state changes during the catalytic process. Also, the resting state of these enzymes appears to have molybdenum in the +6 oxidation state and molybdenum oxidation state changes are observed only when reducing agents are added to the enzyme.1 All of the enzymes contain two atoms of molybdenum, and in the cases of xanthine oxidase, aldehyde oxidase. and nitrate reductase, two molecules of flavin as well.4 Some researchers believe9 that molybdenum alternates between the +6 and +5 oxidation states during enzyme activity. However, there is evidence10 that the +4 oxidation state also may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Bray, P. F. Knowles, and L. S. Meriwether,“ESR and the Role of Molybdenum in Enzymic Catalysis by Milk Xanthine Oxidase,” in: “Magnetic Resonance in Biological Systems,” A. Ehrenberg, B. G. Malmstrom, and T. Vanngard, eds., Pergamon Press, Oxford (1967), p. 249.

    Google Scholar 

  2. H. Beinert and W. H. Orme-Johnson, “Electron Spin Relaxation as a Probe for Active Centers of Paramagnetic Enzyme Species,” in ref. 1, p. 221.

    Google Scholar 

  3. A. Nason, “Nitrate Reductases,” in: “The Enzymes,”P. D. Boyer, H. Lardy, and K. Myrback, eds., Vol. 7, Academic Press, New York, N.Y. (1963), p. 587.

    Google Scholar 

  4. R. C. Bray and J. C. Swann, “Molybdenum-Containing Enzymes,” Struct. and Bonding, 11:107 (1972).

    Article  CAS  Google Scholar 

  5. K. B. Taylor, “Enzymology of Nitrogent Fixation in Cell-free Extracts of Clostridium Pasteurianum”` J. Biol. Chem., 244:171 (1969).

    PubMed  CAS  Google Scholar 

  6. G. Palmer and V. Massey, “Electron Paramagnetic Resonance and Circular Dichroism Studies on Milk Xanthine Oxidase,” J. Biol. Chem., 244:2614 (1969).

    PubMed  CAS  Google Scholar 

  7. C. H. Fewson and D. J. D. Nicholas, “Nitrate Reduc-tase from Pseudomonas Aeruginosa,” Biochim. Biophys. Acta, 49:335 (1961).

    Article  PubMed  CAS  Google Scholar 

  8. D. J. D. Nicholas, P. W. Wilson, W. Heinen, G.Palmer, and H. Beinert, “Use of Electron Para magnetic Resonance Spectroscopy in Investigations of Functional Metal Components in Microorganisms,” Nature, 196:433 (1962).

    Article  PubMed  CAS  Google Scholar 

  9. D. J. D. Nicholas and P. J. Wilson, “A Dissimila-tory Nitrate Reductase from Neurospora Crassa,” Biochim. Biophys. Acta, 86:466 (1964).

    Article  PubMed  CAS  Google Scholar 

  10. V. Massey, H. Komai, G. Palmer, and G. B. Elion,Mechanism of Inactivation of Xanthine Oxidase by Allopurinol and other Pyrazolo[3,4-d]pyrimidines,J. Biol. Chem., 245:2837 (1970).

    PubMed  CAS  Google Scholar 

  11. A. F. Isbell, Jr., and D. T. Sawyer, “The Electrochemistry of Molybdenum(VI,V)-8-Quinolinol Complexes in Dimethyl Sulfoxide,” Inorg. Chem., 10:2449 (1971).

    CAS  Google Scholar 

  12. D. T. Sawyer, J. N. Gerber, L. W. Amos, and L. J.DeHayes, “Electrochemical and NMR Studies of Molybdenum-Flavin Model Compounds in Aprotic Solvents,” J. Less-Common Metals, 36:487 (1974)

    Article  CAS  Google Scholar 

  13. T. L. Riechel and D. T. Sawyer, “Electrochemical Studies of Vanadium(III), -(IV), and -(V) Complexes of 8-Quinolinol in Acetonitrile. Formation of a Binuclear Mixed-valence (IV,V) Complex,” Inorg. Chem., 14:1869 (1975).

    Article  CAS  Google Scholar 

  14. J. K. Howie and D. T. Sawyer, “Electrochemical Studies of Oxo and Sulfido-bridged Binuclear Molybdenum(V) Complexes in Aprotic Media,” Inorg. Chem., 15:1892 (1976).

    Article  CAS  Google Scholar 

  15. D. T. Sawyer, J. K. Howie, and W. H. Doub, “Oxidation-reduction Chemistry of Oxo and Sulfidobridged Binuclear Molybdenum(V) Complexes in Aprotic Media,” J. Less-Common Metals, 54:425 (1977).

    Article  CAS  Google Scholar 

  16. D. T. Sawyer and W. H. Doub, Jr., “Formation of Model Compounds of Biological Molybdenum(IV),” Inorg. Chem., 14:1736 (1975).

    Article  CAS  Google Scholar 

  17. For recent work on molybdenum model compounds, see E. I. Stiefel, “The Coordination and Bioinorganic Chemistry of Molybdenum,” in: “Progress in Inorganic Chemistry,” Vol. 22, S. J. Lippard, ed., John Wiley and Sons, New York, N.Y. (1977), p. 1, and references therein.

    Google Scholar 

  18. R. Durant, C. F. Garner, M. R. Hyde, and F. E.Mabbs, “Kinetics and Mechanism of the Oxygentransfer Reaction Between Bis(diethyldithiocarbamato)dioxomolybdenum(VI) and Triphenylphosphine,” J. Chem. Soc. Dalton Trans., 955 (1977).

    Google Scholar 

  19. C. D. Garner, R. Durant, and F. E. Mabbs, “Molybde-num(VI) Complexes as Oxidants,” Inorg. Chim. Acta, 24:L29 (1977).

    Article  CAS  Google Scholar 

  20. J. T. Spence, M. Minelli, P. Kroneck, M. I. Scullane,and N. D. Chasteen, “Monomeric Molybdenum(V) Oxo Complexes with Tetradentate Aminoethanethiols,” J. Am. Chem. Soc., 100:8002 (1978).

    Article  CAS  Google Scholar 

  21. K. D. Magers, C. G. Smith, and D. T. Sawyer, “Re versible Binding of Dioxygen by Tris(3,5-ditert-butylcatecholato)manganese(III) in Dimethyl Sulfoxide,” J, Am. Chem. Soc., 100:989 (1978).

    Article  CAS  Google Scholar 

  22. Ko D. Magers, C. G. Smith, and D. T. Sawyer, “Polar-ographic and Spectroscopic Studies of the Manganese(II), -(III), and -(IV) Complexes Formed by Polyhydroxy Ligands,” Inorg, Chem., 17:515 (1978).

    Article  CAS  Google Scholar 

  23. P. A. Wicklund and D. G. Brown, “Synthesis and Characterization of Some Cobalt(III) Catechol Complexes,” Inorg. Chem., 15:396 (1976).

    Article  CAS  Google Scholar 

  24. P. A. Wicklund, L. S. Beckmann, and D. G. Brown,“Preparation and Properties of a Stable Semiquinone Complex,” Inorg. Chem., 15:1996 (1976).

    Article  CAS  Google Scholar 

  25. J. P. Wilshire and D. T. Sawyer, “Reversible Binding of Dioxygen, Nitric Oxide, and Carbon Monoxide by Bis(3,5-di-tert-butylcatecholato)vanadium(IV),” J. Am. Chem. Soc., 100:3972 (1978).

    Article  CAS  Google Scholar 

  26. A. D. Goolsby and D. T. Sawyer, “Verratile Solid State Potentiostat and Amperostat,” Anal. Chem., 39:411 (1967).

    Article  CAS  Google Scholar 

  27. D. F. Evans, “The Determination of the Paramag netic Susceptibility of Substances in Solution by Nuclear Magnetic Resonance,” J. Chem. Soc., 2003 (1959).

    Google Scholar 

  28. B. N. Figgis and J. Lewis, “The Magnetochemistry of Complex Compounds,” in: “Modern Coordination Chemistry, Principles and Methods,” J. Lewis and R. G. Wilkins, eds., Interscience, New York, N.Y. (1960), Ch. 6.

    Google Scholar 

  29. W. C. Fernelius, K. Terada, and B. E. Bryant,“Molybdenum(VI) Dioxyacetylacetonate,” Inorg. Synth., 6:147 (1960).

    Article  CAS  Google Scholar 

  30. Carbon and hydrogen analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn., 37921. The molybdenum content was determined thermogravimetrically.

    Google Scholar 

  31. G. P. Haight, Jr., and V. Paragamian, “Color Complexes of Catechol with Molybdate,” Anal. Chem., 32:642 (1960).

    Article  CAS  Google Scholar 

  32. D. H. Brown and J. D. McCollum, “Complexes of Tungstate and Molybdate Ions Containing Two Organic Ligands,” J. Inorg. Nucl. Chem., 25:1483 (1963).

    Article  CAS  Google Scholar 

  33. R. N. Soni and M. Bartusek, “Molybdate Complexes with o-diphenols,” J. Inorg. Nucl. Chem., 33:2557 (1971).

    Article  CAS  Google Scholar 

  34. K. Kustin and S.-T. Liu, “Kinetics and Complex Formation of Molybdate with Catechol,” J. Am. Chem. Soc., 95:2487 (1973).

    Article  PubMed  CAS  Google Scholar 

  35. K. Gilbert and K. Kustin, “Kinetics and Mechanism of Molybdate and Tungstate Complex Formation with Catechol Derivatives,” J. Am. Chem. Soc., 98:5502 (1976).

    Article  PubMed  CAS  Google Scholar 

  36. C. G. Pierpont, H. H. Downs, and T. G. Rukavina,“Neutral Tris(o-benzoquinone) Complexes of Chromium, Molybdenum, and Tungsten,” J. Am. Chem. Soc., 96:5573 (1974).

    Article  CAS  Google Scholar 

  37. J. P. Wilshire, L. Leon, P. Bosserman, and D. T.Sawyer, “Formation of Bis[bis(3,5-di-tertbutylcatecholato)oxomolybdenum(VI)] and Related Stable Molybdenum-catechol Complexes,” J. Am. Chem. Soc., 101:3379 (1979).

    Article  CAS  Google Scholar 

  38. R. M. Buchanan and C. G. Pierpont, “Synthesis,Structure, and Properties of the Oxygen Deficient Bis(3,5-di-tert-butyl)catecholatooxomolybdenum(VI) Dimer, [MoO(O2C6H2 (t-But)2)2]2,” Inorg. Chem., 18:1616 (1979).

    Article  CAS  Google Scholar 

  39. R. M. Wing and K. P. Callaham, “The Characteriza tion of Metal-oxygen Bridge Systems,” Inorg. Chem., 8:871 (1969).

    Article  CAS  Google Scholar 

  40. W. P. Griffith, “Oxy-complexes and Their Vibra-tional Spectra,” J. Chem. Soc. (A), 211 (1969).

    Google Scholar 

  41. The mean values of the proton nmr resonances (vs TMS) for the 3,5-di-tert-butyl groups of the free catechol, its anion, and the related o-quinone are 1.33 ppm and 1.21 ppm, 1.29 ppm and 1.17 ppm, and 1.18 ppm and 1.16 ppm, respectively. The mean resonance values (two doublets) for the two ring protons of free catechol, its anion and its related quinone are 6.69 ppm (6.72 and 6.66) ,6.19 ppm (6.31 and 6.08) and 6.28 (6.49 and 6.07), respectively.

    Google Scholar 

  42. D. T. Sawyer and E. J. Nanni, Jr., Unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Wilshire, J.P., Leon, L., Bosserman, P., Sawyer, D.T. (1980). Electrochemical and Spectroscopic Studies of Molybdenumcatechol Complexes: Models for Molybdoenzymes and Biological Transport. In: Newton, W.E., Otsuka, S. (eds) Molybdenum Chemistry of Biological Significance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9149-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9149-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9151-1

  • Online ISBN: 978-1-4615-9149-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics