Skip to main content

Myeloperoxidase-Mediated Cytotoxic Systems

  • Chapter
Book cover Biochemistry and Metabolism

Abstract

Myeloperoxidase (MPO), H2O2, and a halide form a powerful antimicrobial system which is effective against a variety of microorganisms. This system is also toxic to certain mammalian cells, namely, spermatozoa, erythrocytes, leukocytes, platelets, and tumor cells. This review (see also Klebanoff, 1975a; Klebanoff and Clark, 1978) will consider the properties of the MPO-mediated antimicrobial system and its role in the intracellular and extracellular toxicity of the polymorphonuclear leukocyte (PMN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cis-DBE:

cis-dibenzoylethylene

CGD:

chronic granulomatous disease

DABCo:

1,4-diazabicyclo[2.2.2]octane

D20:

deuterium oxide

DPF:

diphenylfuran

HO2 :

perhydroxy radical

LPO:

lactoperoxidase

MPO:

myeloperoxidase

O - :

superoxide anion

102 :

singlet oxygen

OH·:

hydroxyl radical

PMN:

polymorphonuclear leukocyte

SOD:

superoxide dismutase

T3 :

trriodothyronine

T4 :

thyroxine.

References

  • Agner, K., 1941, Verdoperoxidase. A ferment isolated from leukocytes, Acta Physiol. Scand. (Suppl. 8) 2:1.

    Article  Google Scholar 

  • Agner, K., 1963, Studies on myeloperoxidase activity. I. Spectrophotometry of the MPO-H2O2 compound, Acta Chem. Scand. 17:332.

    Article  Google Scholar 

  • Agner, K., 1972, Biological effects of hypochlorous acid formed by “MPO”-peroxidation in the presence of chloride ions, in: Structure and Function of Oxidation-Reduction Enzymes (A. Akeson and A. Ehrenberg, eds.), Vol. 18, pp. 329–335, Pergamon Press, New York.

    Google Scholar 

  • Alexander, N.M., 1974, Oxidative cleavage of tryptophanyl peptide bonds during chemical- and peroxidase-catalyzed iodinations, J. Biol. Chem. 249:1946.

    PubMed  CAS  Google Scholar 

  • Allen, R. C., 1975a, Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation, Biochem. Biophys. Res. Commun. 63:675.

    Article  CAS  Google Scholar 

  • Allen, R. C., 1975b, The role of pH in the chemiluminescent response of the myeloperoxidasehalide-HOOH antimicrobial system, Biochem. Biophys. Res. Commun. 63:684.

    Article  CAS  Google Scholar 

  • Andersen, B. R., Brendzel, A. M., and Lint, T. F., 1977, Chemiluminescence spectra of human myeloperoxidase and polymorphonuclear leukocytes, Infect. Immun. 17:62.

    PubMed  CAS  Google Scholar 

  • Annear, D. I., and Dorman, D. C., 1952, Hydrogen peroxide accumulation during growth of the pneumococcus, Aust. J. Exp. Biol. Med. Sci. 30:191.

    Article  PubMed  CAS  Google Scholar 

  • Arneson, R. M., 1970, Substrate-induced chemiluminescence of xanthine oxidase and aldehyde oxidase, Arch. Biochem. Biophys. 136:352.

    Article  PubMed  CAS  Google Scholar 

  • Auclair, C., Cramer, E., Hakim, J., and Bovin, P., 1976, Studies on the mechanism of NADPH oxidation by the granule fraction isolated from human resting polymorphonuclear blood cells, Biochimie 58:1359.

    Article  PubMed  CAS  Google Scholar 

  • Aune, T. M., and Thomas, E. L., 1977, Accumulation of hypothiocyanite ion during peroxidasecatalyzed oxidation of thiocyanate ion, Eur. J. Biochem. 80:209.

    Article  PubMed  CAS  Google Scholar 

  • Avery, O. T., and Morgan, H. J., 1924, The occurrence of peroxide in cultures of pneumococcus, J. Exp. Med. 39:275.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. M., Curnutte, J. T., and McMurrich, B. J., 1976, The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst, J. Clin. Invest. 58:989.

    Article  PubMed  CAS  Google Scholar 

  • Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1969, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48:187.

    Article  PubMed  CAS  Google Scholar 

  • Baehner, R. L., Gilman, N., and Karnovsky, M. L., 1970a, Respiration and glucose oxidation in human and guinea pig leukocytes: Comparative studies, J. Clin. Invest. 49:692.

    Article  CAS  Google Scholar 

  • Baehner, R. L., Nathan, D. G., and Karnovsky, M. L., 1970b, Correction of metabolic deficiencies in the leukocytes of patients with chronic granulomatous disease, J. Clin. Invest. 49:865.

    Article  CAS  Google Scholar 

  • Baggiolini, M., Hirsch, J. G., and de Duve, C., 1969, Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation, J. Cell Biol. 40:529.

    Article  PubMed  CAS  Google Scholar 

  • Bainton, D. F., and Farquhar, M. G., 1968a, Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. I. Histochemical staining of bone marrow smears, J. Cell Biol. 39:286.

    Article  CAS  Google Scholar 

  • Bainton, D. F., and Farquhar, M. G., 1968b, Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. H. Cytochemistry and electron microscopy of bone marrow cells, J. Cell Biol. 39:299.

    Article  CAS  Google Scholar 

  • Baron, D. N., and Ahmed, S. A., 1969, Intracellular concentrations of water and of the principle electrolytes determined by the analysis of isolated human leucocytes, Clin. Sci. 37:205.

    PubMed  CAS  Google Scholar 

  • Belding, M. E., Klebanoff, S. J., and Ray, C. G., 1970, Peroxidase-mediated virucidal systems, Science 167:195.

    Article  PubMed  CAS  Google Scholar 

  • Brandrick, A. M., Newton, J. M., Henderson, G., and Vickers, J. A., 1967, An investigation into the interaction between iodine and bacteria, J. Appl. Bacteriol 30:484.

    Article  PubMed  CAS  Google Scholar 

  • Breton-Gorius, J., Coquin, Y., and Guichard, J., 1975, Activités peroxydasiques de certaines granulations des neutrophiles dans deux cas de déficit congénital en myéloperoxydase, C. R. Acad. Sci. (Paris) 280:1753.

    CAS  Google Scholar 

  • Briggs, R. T., Drath, D. B., Karnovsky, M. L., and Karnovsky, M. J., 1975a, Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method, J. Cell Biol. 67:566.

    Article  CAS  Google Scholar 

  • Briggs, R. T., Karnovsky, M. L., and Karnovsky, M. J., 1975b, Cytochemical demonstration of hydrogen peroxide in the polymorphonuclear leukocyte phagosomes, J. Cell Biol. 64:254.

    Article  CAS  Google Scholar 

  • Buege, J. E., and Aust, S. D., 1976, Lactoperoxidase-catalyzed lipid peroxidation of microsomal and artificial membranes, Biochim. Biophys. Acta 444:192.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R. H., and Karnovsky, M. L., 1964, Enzymatic basis of the respiratory burst during phagocytosis, Nature 204:255.

    Article  PubMed  CAS  Google Scholar 

  • Cech, P., Stalder, H., Widmann, J. J., Rohner, A., and Miescher, P. A., 1979a, Leukocyte myeloperoxidase deficiency and diabetes mellitus associated with Candida albicans liver abscess, Am. J. Med. 66:149.

    Article  CAS  Google Scholar 

  • Cech, P., Papathanassiou, A., Boreux, G., Roth, P., and Miescher, P. A., 1979b, Hereditary myeloperoxidase deficiency, Blood 53:403.

    CAS  Google Scholar 

  • Cheson, B. D., Christensen, R. L., Sperling, R., Köhler, B. E., and Babior, B. M., 1976, The origin of the chemiluminescence of phagocytosing granulocytes, J. Clin. Invest. 58:789.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1975, Neutrophil-mediated tumor cell cytotoxicity: Role of the peroxidase system, J. Exp. Med. 141:1442.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1977a, Myeloperoxidase-H2O2-halide system: Cytotoxic effect on human blood leukocytes, Blood 50:65.

    CAS  Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1977b, Neutrophil-mediated release of serotonin from human platelets: Role of myeloperoxidase and H2O2, Clin. Res. 25:474A.

    Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1979a, Myeloperoxidase-mediated platelet release reaction, J. Clin. Invest. 63:177.

    Article  CAS  Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1979b, Chemotactic factor inactivation by the myeloperoxidasehydrogen peroxide-halide system: An inflammatory control mechanism, J. Clin. Invest. 64:913.

    Article  CAS  Google Scholar 

  • Clark, R. A., and Klebanoff, S. J., 1979c, Role of the myeloperoxidase-H2O2-halide system in concanavalin A-induced tumor cell killing by human neutrophils, J. Immunol. 122:2605.

    CAS  Google Scholar 

  • Clark, R. A., Klebanoff, S. J., Einstein, A. B., and Fefer, A., 1975, Peroxidase-H2O2-halide system: Cytotoxic effect on mammalian tumor cells, Blood 45:161.

    PubMed  CAS  Google Scholar 

  • Clark, R. A., Olsson, L, and Klebanoff, S. J., 1976, Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules, J. Cell Biol. 70:719.

    Article  PubMed  CAS  Google Scholar 

  • Curnutte, J. T., and Babior, B. M., 1974, Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes, J. Clin. Invest. 53:1662.

    Article  PubMed  CAS  Google Scholar 

  • DeChatelet, L. R., McCall, C. E., and Cooper, M. R., 1971, Direct measurement of iodine production by sonic extracts of polymorphonuclear leukocytes, Clin. Chem. 17:392.

    PubMed  CAS  Google Scholar 

  • DeChatelet, L. R., McPhail, L. C., Mullikin, D., and McCall, C. E., 1975, An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes, J. Clin. Invest. 55:714.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, R. D., Root, R. K., and Bennett, J. E., 1972, Factors influencing killing of Cryptococcus neoformans by human leukocytes in vitro, J. Infect. Dis. 125:367.

    Article  PubMed  CAS  Google Scholar 

  • Dogon, I. L., Kerr, A. C., and Amdur, B. H., 1962, Characterization of an antibacterial factor in human parotid secretions, active against Lactobacillus casei, Arch. Oral Biol. 7:81.

    Article  PubMed  CAS  Google Scholar 

  • Edelson, P. J., and Cohn, Z. A., 1973, Peroxidase-mediated mammalian cell cytotoxicity, J. Exp. Med. 138:318.

    Article  PubMed  CAS  Google Scholar 

  • Endres, G., and Herget, L., 1929, Mineralzusammensetzung der Blutplättchen und weissen Blut-köperchen, Z. Biol. 88:451.

    CAS  Google Scholar 

  • Evans, W. H., and Rechcigl, M., Jr., 1967, Factors influencing myeloperoxidase and catalase activities in polymorphonuclear leukocytes, Biochim. Biophys. Acta 148:243.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C. S., 1976, Photosensitized oxidation and singlet oxygen: Consequences in biological systems, in: Free Radicals in Biology (W. A. Pryor, ed.), Vol. 2, pp. 85–133, Academic Press, New York.

    Google Scholar 

  • Fridovich, I., 1970, Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase, J. Biol. Chem. 245:4053.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1976, Oxygen radicals, hydrogen peroxide, and oxygen toxicity, in: Free Radicals in Biology (W. A. Pryor, ed.), Vol. 1, pp. 239–277, Academic Press, New York.

    Chapter  Google Scholar 

  • Goldstein, I. M., Cerqueira, M., Lind, S., and Kaplan, H. B., 1977, Evidence that the superoxidegenerating system of human leukocytes is associated with the cell surface. J. Clin. Invest. 59:249.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. E., and Stumpf, P. K., 1946, The mode of action of chlorine, J. Am. Water Works Assoc. 38:1301.

    CAS  Google Scholar 

  • Grignaschi, V. I., Sperperato, A. M., Etcheverry, M. J., and Macario, A. J. L., 1963, Un nuevo cuadro citoquimico: Negatividad espontanea de las reacciones de peroxidasas, oxidasas y lipido en la progenie neutrofilia y en los monocitos de dos hermanos, Rev. Asoc. Med. Argent. 77:218.

    Google Scholar 

  • Halliwell, B., 1978, Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: Is it a mechanism for hydroxyl radical production in biochemical systems?, FEBS Lett. 92:321.

    Article  PubMed  CAS  Google Scholar 

  • Hamon, C. B., and Klebanoff, S. J., 1973, A peroxidase-mediated, Streptococcus mitis-dependent antimicrobial system in saliva, J. Exp. Med. 137:438.

    Article  PubMed  CAS  Google Scholar 

  • Hanssen, F. S., 1924, The bactericidal property of milk, Br. J. Exp. Pathol. 5:271.

    CAS  Google Scholar 

  • Harrison, J. E., and Schultz, J., 1976, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371.

    PubMed  CAS  Google Scholar 

  • Harrison, J. E., Watson, B. D., and Schultz, J., 1978, Myeloperoxidase and singlet oxygen: A reappraisal, FEBS Lett. 92:327.

    Article  PubMed  CAS  Google Scholar 

  • Hasty, N., Merkel, P. B., Radlick, P., and Kearns, D. R., 1972, Role of azide in singlet oxygen reactions: Reaction of azide with singlet oxygen, Tetrahed. Lett. 1:49.

    Article  Google Scholar 

  • Held, A. M., and Hurst, J. K., 1978, Ambiguity associated with use of singlet oxygen trapping agents in myeloperoxidase-catalyzed oxidations, Biochem. Biophys. Res. Commun. 81:878.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, D. C., and Lehrer, R. L, 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55:707.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, B., and Good, R. A., 1972, Laboratory models of chronic granulomatous disease, J. Reticuloendothel. Soc. 12:216.

    PubMed  CAS  Google Scholar 

  • Holmes, B., Page, A. R., and Good, R. A., 1967, Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function, J. Clin. Invest. 46:1422.

    Article  PubMed  CAS  Google Scholar 

  • Homan-Müller, J. W. T., Weening, R. S., and Roos, D., 1975, Production of hydrogen peroxide by phagocytizing human granulocytes, J. Lab. Clin. Med. 85:198.

    PubMed  Google Scholar 

  • Hoogendoorn, H., Piessens, J. P., Scholtes, W., and Stoddard, L. A., 1977, Hypothiocyanite ion: The inhibitor formed by the system lactoperoxidase-thiocyanate-hydrogen peroxide. I. Identification of the inhibiting compound, Caries Res. 11:77.

    Article  PubMed  CAS  Google Scholar 

  • Howard, D. H., 1973, Fate of Histoplasma capsulatum in guinea pig polymorphonuclear leukocytes, Infect. Immun. 8:412.

    PubMed  CAS  Google Scholar 

  • Iyer, G. Y. N., 1959, Free amino acids in leukocytes from normal and leukemic subjects, J. Lab. Clin. Med. 54:229.

    PubMed  CAS  Google Scholar 

  • Iyer, G. Y. N., Islam, D. M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature 192:535.

    Article  CAS  Google Scholar 

  • Jacobs, A. A., Low, I. E., Paul, B. B., Strauss, R. R., and Sbarra, A. J., 1972, Mycoplasmacidal activity of peroxidase-H2O2-halide systems, Infect. Immun. 5:127.

    PubMed  CAS  Google Scholar 

  • Jago, G. R., and Morrison, M., 1962, Antistreptococcal activity of lactoperoxidase HI, Proc. Soc. Exp. Biol. Med. 111:585.

    PubMed  CAS  Google Scholar 

  • Jandl, R. C., Andre-Schwartz, J., Borges-Dubois, L., Kipnes, R. S., McMurrich, B. J., and Babior, B. M., 1978, Termination of the respiratory burst in human neutrophils, J. Clin. Invest. 61:1176.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, M. S., and Bainton, D. F., 1973, Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte, J. Cell Biol. 56:379.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, R. B., Jr., and Baehner, R. L., 1970, Improvement of leukocyte bactericidal activity in chronic granulomatous disease, Blood 35:350.

    PubMed  Google Scholar 

  • Johnston, R. B., Jr., Keele, B. B., Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., and Rajagopalan, K. V., 1975, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357.

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara, T., and Kearns, D. R., 1973, Direct spectroscopic evidence for a deuterium solvent effect on the lifetime of singlet oxygen in water, J. Am. Chem. Soc. 95:5886.

    Article  CAS  Google Scholar 

  • Kakinuma, K., 1970, Metabolic control and intracellular pH during phagocytosis of polymorphonuclear leucocytes, J. Biochem. 68:177.

    PubMed  CAS  Google Scholar 

  • Kaplan, E. L., Laxdal, T., and Quie, P. G., 1968, Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: Bactericidal capacity for streptococci, Pediatrics 41:591.

    PubMed  CAS  Google Scholar 

  • Kasha, M., and Khan, A. U., 1970, The physics, chemistry and biology of singlet molecular oxygen, Ann. N.Y. Acad. Sci. 171:5.

    Article  CAS  Google Scholar 

  • Kearns, D. R., 1971, Physical and chemical properties of singlet molecular oxygen, Chem. Rev. 71:395.

    Article  CAS  Google Scholar 

  • Kellogg, E. W., III, and Fridovich, I., 1975, Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250:8812.

    PubMed  CAS  Google Scholar 

  • Khan, A. U., 1970, Singlet molecular oxygen from superoxide anion and sensitized fluorescence of organic molecules, Science 168:476.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A. U., 1977, Theory of electron transfer generation and quenching of singlet oxygen [1Σg+ and 1Δg] by superoxide anion. The role of water in the dismutation of O2 -, J. Am. Chem. Soc. 99:370.

    Article  CAS  Google Scholar 

  • King, M. M., Lai, E. K., and McCay, P. B., 1975, Singlet oxygen production associated with enzyme-catalyzed lipid peroxidation in liver microsomes, J. Biol. Chem. 250:6496.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1967a, A peroxidase-mediated antimicrobial system in leukocytes, J. Clin. Invest. 46:1078.

    Google Scholar 

  • Klebanoff, S. J., 1967b, Iodination of bacteria: A bactericidal mechanism, J. Exp. Med. 126:1063.

    Article  CAS  Google Scholar 

  • Klebanoff, S. J., 1968, Myeloperoxidase-halide-hydrogen peroxide antimicrobial system, J. Bacterial. 95:2131.

    CAS  Google Scholar 

  • Klebanoff, S. J., 1969, Antimicrobial activity of catalase at acid pH, Proc. Soc. Exp. Biol. Med. 132:571.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1970a, Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes, Science 169:1095.

    Article  CAS  Google Scholar 

  • Klebanoff, S, J., 1970b, Myeloperoxidase-mediated antimicrobial systems and their role in leukocyte function, in: Biochemistry of the Phagocytic Process: Localization and the Role of Myeloperoxidase and the Mechanism of the Halogenation Reaction (J. Schultz, ed.), pp. 89–110, North-Holland, Amsterdam.

    Google Scholar 

  • Klebanoff, S. J., 1974, Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 249:3724.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., 1975a, Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin. Hematol. 12:117.

    CAS  Google Scholar 

  • Klebanoff, S. J., 1975b, Antimicrobial systems of the polymorphonuclear leukocyte, in: The Phagocytic Cell in Host Resistance (J. A. Bellanti and D. H. Dayton, eds.), pp. 45–59, Raven Press, New York.

    Google Scholar 

  • Klebanoff, S. J., 1979, Effect of estrogens on the myeloperoxidase-mediated antimicrobial system, Infect. Immun. 25:153.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Belding, M. E., 1974, Virucidal activity of H2O2-generating bacteria: Requirement for peroxidase and a halide, J. Infect. Dis. 129:345.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Clark, R. A., 1975, Hemolysis and iodination of erythrocyte components by a myeloperoxidase-mediated system, Blood 45:699.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Clark, R. A., 1977, Iodination by human polymorphonuclear leukocytes: A re-evaluation, J. Lab. Clin. Med. 89:675.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Clark, R. A., 1978, The Neutrophil: Function and Clinical Disorders, North-Holland, Amsterdam.

    Google Scholar 

  • Klebanoff, S. J., and Green, W. L., 1973, Degradation of thyroid hormones by phagocytosing human leukocytes, J. Clin. Invest. 52:60.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Hamon, C. B., 1972, Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes, J. Reticubendothel. Soc. 12:170.

    CAS  Google Scholar 

  • Klebanoff, S. J., and Luebke, R. G., 1965, The antilactobacillus system of saliva. Role of salivary peroxidase, Proc. Soc. Exp. Biol. Med. 118:483.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Pincus, S. H., 1971, Hydrogen peroxide utilization in myeloperoxidasedeficient leukocytes: A possible microbicidal control mechanism, J. Clin. Invest. 50:2226.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Smith, D. C., 1970a, Peroxidase-mediated antimicrobial activity of rat uterine fluid, Gynec. Invest. 1:21.

    Article  CAS  Google Scholar 

  • Klebanoff, S. J., and Smith, D. C., 1970b, The source of H2O2 for the uterine fluid-mediated sperminhibitory system, Biol. Reprod. 3:236.

    CAS  Google Scholar 

  • Klebanoff, S. J., and White, L. R., 1969, Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood, N. Engl. J. Med. 280:460.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., Clem, W. H., and Luebke, R. G., 1966, The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system, Biochim. Biophys. Acta 117:63.

    Article  PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., Clark, R. A., and Rosen, H., 1976, Myeloperoxidase-mediated cytotoxicity, in: Cancer Enzymology (J. Schultz and F. Ahmad, eds.), pp. 267–288, Academic Press, New York.

    Google Scholar 

  • Klebanoff, S. J., Rosen, H., and Clark, R. A., 1977, Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, in: Movement, Metabolism and Bactericidal Mechanisms of Phagocytes (F. Rossi, P. L. Patriarca, and D. Romeo, eds.), pp. 295–305, Piccin, Padua.

    Google Scholar 

  • Knox, W. E., Stumpf, P. K., Green, D. E., and Auerbach, V. H., 1948, The inhibition of sulfhydryl enzymes as the basis of the bactericidal action of chlorine, J. Bacteriol 55:451.

    CAS  Google Scholar 

  • Kobayashi, S., and Ando, W., 1979, Co-oxidation of 1,3-diphenylisobenzofuran by the Haber-Weiss reaction: Is singlet oxygen concerned in this oxidation?, Biochem. Biophys. Res. Commun. 88:676.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., 1974a, Neutrophil granulocyte function in vitro Evaluation of fluid-phase leukocytebacteria reaction system, Acta Pathol. Microbiol. Scand. 82:127.

    Google Scholar 

  • Koch, C., 1974b, Effect of sodium azide upon normal and pathological granulocyte function, Acta Pathol. Microbiol. Scand. 82:136.

    CAS  Google Scholar 

  • Kojima, S., 1931, Studies on peroxidase. II. The effect of peroxidase on the bactericidal action of phenols, J. Biochem. 14:95.

    CAS  Google Scholar 

  • Krinsky, N. I., 1974, Singlet excited oxygen as a mediator of the antibacterial action of leukocytes, Science 186:363.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. C.-S., and Wilson, T., 1973, Oxygen in chemiluminescence. A competitive pathway of dioxetane decomposition catalyzed by electron donors, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 265–283, Plenum Press, New York.

    Google Scholar 

  • Lehrer, R. I., 1969, Antifungal effects of peroxidase systems, J. Bacterial. 99:361.

    CAS  Google Scholar 

  • Lehrer, R. I., 1970, Measurement of candidacidal activity of specific leukocyte types in mixed cell populations. I. Normal, myeloperoxidase-deficient, and chronic granulomatous disease neutrophils, Infect. Immun. 2:42.

    PubMed  CAS  Google Scholar 

  • Lehrer, R. I., 1971, Inhibition by sulfonamides of the candidacidal activity of human neutrophils, J. Clin. Invest. 50:2498.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., 1972, Functional aspects of a second mechanism of candidacidal activity by human neutrophils, J. Clin. Invest. 51:2566.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48:1478.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R. I., and Jan, R. G., 1970, Interaction of Aspergillus fumigatus spores with human leukocytes and serum, Infect. Immun. 1:345.

    PubMed  CAS  Google Scholar 

  • Lehrer, R. I., Hanifin, J., and Cline, M. J., 1969, Defective bactericidal activity in myeloperoxidase deficient human neutrophils, Nature 223:78.

    Article  PubMed  CAS  Google Scholar 

  • Mandell, G. L., 1970, Intraphagosomal pH of human polymorphonuclear neutrophils, Proc. Soc. Exp. Biol. Med. 134:447.

    PubMed  CAS  Google Scholar 

  • Mandell, G. L., 1974, Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils, Infect. Immun. 9:337.

    PubMed  CAS  Google Scholar 

  • Mandell, G. L., 1975, Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction, J. Clin. Invest. 55:561.

    Article  PubMed  CAS  Google Scholar 

  • Mandell, G. L., and Hook, E. W., 1969, Leukocyte bactericidal activity in chronic granulomatous disease: Correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing, J. Bacteriol 100:531.

    PubMed  CAS  Google Scholar 

  • Massey, V., Strickland, S., Mayhew, S. G., Howell, L. G., Engel, P. C., Matthews, R. G., Schuman, M., and Sullivan, P. A., 1969, The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen, Biochem. Biophys. Res. Commun. 36:891.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, N. R., Wong, P. S., and Travis, J., 1979, Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase, Biochem. Biophys. Res. Commun. 88:402.

    Article  PubMed  CAS  Google Scholar 

  • McCall, C. E., DeChatelet, L. R., Cooper, M. R., and Ashburn, P., 1971, The effects of ascorbic acid on bactericidal mechanisms of neutrophils, J. Infect. Dis. 124:194.

    Article  PubMed  CAS  Google Scholar 

  • McCord, J. M., and Day, E. D. Jr., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex, FEBS Lett. 86:139.

    Article  PubMed  CAS  Google Scholar 

  • McLeod, J. M., and Gordon, J., 1922, Production of hydrogen peroxide by bacteria, Biochem. J. 16:499.

    PubMed  CAS  Google Scholar 

  • McRipley, R. J., and Sbarra, A. J., 1967a, Role of the phagocyte in host-parasite interactions. XI. Relationship between stimulated oxidative metabolism and hydrogen peroxide formation, and intracellular killing, J. Bacteriol. 94:1417.

    CAS  Google Scholar 

  • McRipley, R. J., and Sbarra, A. J., 1967b, Role of the phagocyte in host-parasite interactions. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in the phagocyte, J. Bacteriol. 94:1425.

    CAS  Google Scholar 

  • Merkel, P. B., Nilsson, R., and Kearns, D. R., 1972, Deuterium effects on singlet oxygen lifetimes in solutions. A new test of singlet oxygen reactions, J. Am. Chem. Soc. 94:1030.

    Article  CAS  Google Scholar 

  • Michell, R. H., Karnovsky, M. J., and Karnovsky, M. L., 1970, The distribution of granule-associated enzymes in guinea pig polymorphonuclear leucocytes, Biochem. J. 116:207.

    PubMed  CAS  Google Scholar 

  • Moosmann, K., and Bojanovsky, A., 1975, Rezidivierende Candidosis bei Myeloperoxydasemangel, Mschr. Kinderheilk. 123:408.

    PubMed  CAS  Google Scholar 

  • Morrison, M., Allen, P. Z., Bright, J., and Jayasinghe, W., 1965, Lactoperoxidase. V. Identification and isolation of lactoperoxidase from salivary gland. Arch. Biochem. Biophys. 111:126.

    Article  PubMed  CAS  Google Scholar 

  • Naskalski, J. W., 1977, Myeloperoxidase inactivation in the course of catalysis of chlorination of taurine, Biochim. Biophys. Acta 485:291.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, E. T., Whest, G. M., and Yang, H-Y., 1976, Ultrastructural localization of peroxidatic catalase in human peripheral blood leukocytes, Lab. Invest. 34:60.

    PubMed  CAS  Google Scholar 

  • Nour-Eldin, F., and Wilkinson, J. F., 1955, Amino-acid content of white blood cells in human leukaemias, Br. J. Haematol. 1:358.

    Article  PubMed  CAS  Google Scholar 

  • Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E., and Rossi, F., 1973, NADPH oxidizing activity in rabbit polymorphonuclear leukocytes: Localization in azurophil granules, Biochem. Biophys. Res. Commun. 316:830.

    Article  Google Scholar 

  • Patriarca, P., Cramer, R., Tedesco, F., and Kakinuma, K., 1975, Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. II. Presence of the NADPH2 oxidizing activity in a myeloperoxidase-deficient subject, Biochim. Biophys. Acta 385:387.

    Article  PubMed  CAS  Google Scholar 

  • Paul, B. B., Jacobs, A. A., Strauss, R. R., and Sbarra, A. J., 1970, Role of the phagocyte in host-parasite interactions. XXIV. Aldehyde generation by the myeloperoxidase-H2 O2-chloride antimicrobial system: A possible in vivo mechanism of action, Infect. Immun. 2:414.

    PubMed  CAS  Google Scholar 

  • Pavlov, E. P., and Solov’ev, V. N., 1967, Changes in the hydrogen ion concentration of cytoplasm during the phagocytosis of microbes stained with indicator dyes, Byull. Eksp, Biol. Med. 63:78.

    Article  CAS  Google Scholar 

  • Philpott, G. W., Bower, R. J., and Parker, C. W., 1973, Selective iodination and cytotoxicity of tumor cells with an antibody-enzyme conjugate, Surgery 74:51.

    PubMed  CAS  Google Scholar 

  • Piatt, J. F., and O’Brien, P. J., 1979, Singlet oxygen formation by a peroxidase, H2O2, and a halide system, Eur, J. Biochem. 93:323.

    Article  CAS  Google Scholar 

  • Piatt, J. F., Cheema, A. S., and O’Brien, P. J., 1977, Peroxidase catalyzed singlet oxygen formation from hydrogen peroxide, FEBS Lett. 74:251.

    Article  PubMed  CAS  Google Scholar 

  • Pincus, S. H., and Klebanoff, S. J., 1971, Quantitative leukocyte iodination, N. Engl. J. Med. 284:744.

    Article  PubMed  CAS  Google Scholar 

  • Pitt, J., and Bernheimer, H. P., 1974, Role of peroxide in phagocytic killing of pneumococci, Infect.Immun. 9:48.

    PubMed  CAS  Google Scholar 

  • Portmann, A., and Auclair, J. E., 1959, Relation entre la lacténine L2 et la lactoperoxydase, Lait 39:147.

    Article  CAS  Google Scholar 

  • Qualliotine, D., DeChatelet, L. R., McCall, C. E., and Cooper, M. R., 1972, Effect of catecholamines on the bactericidal activity of polymorphonuclear leukocytes, Infect. Immun. 6:211.

    PubMed  CAS  Google Scholar 

  • Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease in childhood, J. Clin. Invest. 46:668.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, B., Pickering, A., and Oram, J. D., 1964, An inhibitory system—lactoperoxidase/thiocyanate/peroxide—in raw milk, in: Proceedings of the Fourth International Symposium on Food Microbiology, pp. 297–305, Göteborg, Sweden.

    Google Scholar 

  • Rohrer, G. F., von Wartburg, J. P., and Aebi, H., 1966, Myeloperoxidase aus menschlichen Leukozyten. I. Isolierung and Charakterisierung des Enzymes, Biochem. Z. 344:478.

    CAS  Google Scholar 

  • Root, R. K., 1974, Correction of the function of chronic granulomatous disease (CGD) granulocytes (PMN) with extracellular H2O2, Clin. Res. 22:452A.

    Google Scholar 

  • Root, R. K., and Metcalf, J. A., 1977, H2O2 release from human granulocytes during phagocytosis. Relationships to superoxide anion formation and cellular catabolism of H2O2: Studies with normal and cytochalasin B-treated cells, J. Clin. Invest. 60:1266.

    Article  PubMed  CAS  Google Scholar 

  • Root, R. K., and Stossel, T. P., 1974, Myeloperoxidase-mediated iodination by granulocytes. Intracellular site of operation and some regulating factors, J. Clin. Invest. 53:1207.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H., and Klebanoff, S. J., 1976, Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes, J. Clin. Invest. 58:50.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H., and Klebanoff, S. J., 1977, Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 252:4803.

    PubMed  CAS  Google Scholar 

  • Rosen, H., and Klebanoff S. J., 1979, Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte, J. Exp. Med. 149:27.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F., and Zatti, M., 1964, Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis, Br. J. Exp. Pathol. 45:548.

    PubMed  CAS  Google Scholar 

  • Rous, P., 1925a, The relative reaction within living mammalian tissues. I. General features of vital staining with litmus, J. Exp. Med. 41:379.

    Article  CAS  Google Scholar 

  • Rous, P., 1925b, The relative reaction within living mammalian tissues. II. On the mobilization of acid material within cells, and the reaction as influenced by the cell state, J. Exp. Med. 41:399.

    Article  CAS  Google Scholar 

  • Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.

    PubMed  CAS  Google Scholar 

  • Sbarra, A. J., Selvaraj, R. J., Paul, B. B., Mitchell, G. W., Jr., and Louis, F., 1977, Some newer insights of the peroxidase mediated antimicrobial system, in: Movement, Metabolism and Bactericidal Mechanisms of Phagocytes (F. Rossi, P. L. Patriarca, and D. Romeo, eds.), pp. 295–304, Piccin, Padua.

    Google Scholar 

  • Schmid, L., and Brune, K., 1974, Assessment of phagocytic and antimicrobial activity of human granulocytes, Infect. Immun. 10:1120.

    PubMed  CAS  Google Scholar 

  • Schultz, J., and Kaminker, K., 1962, Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys. 96:465.

    Article  PubMed  CAS  Google Scholar 

  • Segal, A. W., and Peters, T. J., 1977, Analytical subcellular fractionation of human granulocytes with special reference to the localization of enzymes involved in microbicidal mechanisms, Clin. Sci. Mol. Med. 52:429.

    PubMed  CAS  Google Scholar 

  • Selvaraj, R. J., Paul, B. B., Strauss, R. R., Jacobs, A. A., and Sbarra, A. J., 1974, Oxidative peptide cleavage and decarboxylation by the MP0-H2O2-Cl- antimicrobial system, Infect. Immun. 9:255.

    PubMed  CAS  Google Scholar 

  • Selvaraj, R. J., Zgliczynski, J. M., Paul, B. B. and Sbarra, A. J., 1978, Enhanced killing of myeloperoxidase-coated bacteria in the myeloperoxidase-H2O2-Cl- system, J. Infect. Dis. 137:481.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, E., and Sachs, B. A., 1964, In vitro leukocyte uptake of 131I labeled iodide, thyroxine and triiodothyronine, and its relation to thyroid function, J. Clin. Endocrinol. 24:313.

    Article  CAS  Google Scholar 

  • Slowey, R. R., Eidelman, S., and Klebanoff, S. J., 1968, Antibacterial activity of the purified peroxidase from human parotid saliva, J. Bacteriol. 96:575.

    PubMed  CAS  Google Scholar 

  • Smith, D. C., and Klebanoff, S. J., 1970, A uterine fluid-mediated sperm-inhibitory system, Biol. Reprod. 3:229.

    PubMed  CAS  Google Scholar 

  • Spicer, S. S., and Hardin, J. H., 1969, Ultrastructure, cytochemistry, and function of neutrophil leukocyte granules. A review, Lab. Invest. 20:488.

    PubMed  CAS  Google Scholar 

  • Sprick, M. G., 1956, Phagocytosis of M. tuberculosis and M. smegmatis stained with indicator dyes, Am. Rev. Tuberc. 74:552.

    PubMed  CAS  Google Scholar 

  • Stadhouders, J., and Veringa, H. A., 1962, Some experiments related to the inhibitory action of milk peroxidase on lactic acid streptococci, Neth. Milk Dairy J. 16:96.

    Google Scholar 

  • Stelmaszynska, T., and Zgliczynski, J. M., 1978, N-(2-Oxoacyl) amino acids and nitrites as final products of dipeptide chlorination mediated by the myeloperoxidase/H2O2/Cl- system, Eur. J. Biochem. 92:301.

    Article  PubMed  CAS  Google Scholar 

  • Stendahl, O., and Lindgren, S., 1976, Function of granulocytes with deficient myeloperoxidasemediated iodination in a patient with generalized pustular psoriasis, Scand. J. Haematol. 16:144.

    Article  PubMed  CAS  Google Scholar 

  • Stole, V., 1971, Stimulation of iodoproteins and thyroxine formation in human leukocytes by phagocytosis, Biochem. Biophys. Res. Commun. 45:159.

    Article  Google Scholar 

  • Stossel, T. P., Pollard, T. D., Mason, R. J., and Vaughan, M., 1971, Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes, J. Clin. Invest. 50:1745.

    Article  PubMed  CAS  Google Scholar 

  • Stossel, T. P., Root, R. K., and Vaughan, M., 1972, Phagocytosis in chronic granulomatous disease and the Chediak-Higashi syndrome, N. Engl. J. Med. 286:120.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, R. R., Paul, B. B., Jacobs, A. A., and Sbarra, A. J., 1971, Role of the phagocyte in host-parasite interactions. XXVII. Myeloperoxidase-H2O2-Cl-mediated aldehyde formation and its relationship to antimicrobial activity, Infect. Immun. 3:595.

    PubMed  CAS  Google Scholar 

  • Tagesson, C., and Stendahl, O., 1973, Influence of the cell surface lipopolysaccharide structure of Salmonella typhimurium on resistance to intracellular bactericidal systems, Acta Pathol. Microbiol. Scand. 81:473.

    CAS  Google Scholar 

  • Takanaka, K., and O’Brien, P. J., 1975, Mechanisms of H2O2 formation of leukocytes. Evidence for a plasma membrane location, Arch. Biochem. Biophys. 169:428.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, E. L., 1979a, Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immun. 23:522.

    CAS  Google Scholar 

  • Thomas, E. L., 1979b, Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Effect of exogenous amines on antibacterial action against Escherichia coli, Infect. Immun. 25:110.

    CAS  Google Scholar 

  • Thomas, E. L., and Aune, T. M., 1977, Peroxidase-catalyzed oxidation of protein sulfhydryls mediated by iodine, Biochemistry 16:3581.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, E. L., and Aune, T. M., 1978a, Cofactor role of iodide in peroxidase antimicrobial action against Escherichia coli, Antimicrob. Agents Chemother. 13:1000.

    Article  CAS  Google Scholar 

  • Thomas, E. L., and Aune, T. M., 1978b, Oxidation of Escherichia coli sulfhydryl components by the peroxidase-hydrogen peroxide-iodide antimicrobial system, Antimicrob. Agents Chemother. 13:1006.

    Article  CAS  Google Scholar 

  • Undritz, E., 1966, Die Alius-Grignaschi-Anamolie: Der erblich-konstitutionelle Peroxydasedefekt der Neutrophilen und Monozyten, Blut 14:129.

    Article  PubMed  CAS  Google Scholar 

  • Weening, R. S., Wever, R., and Roos, D., 1975, Quantitative aspects of the production of superoxide radicals by phagocytizing human leukocytes, J. Lab. Clin. Med. 85:245.

    PubMed  CAS  Google Scholar 

  • Whittenbury, R., 1964, Hydrogen peroxide formation and catalase activity in lactic acid bacteria, J. Gen. Microbiol. 35:13.

    PubMed  CAS  Google Scholar 

  • Wilson, D. L., and Manery, J. F., 1949, The permeability of rabbit leucocytes to sodium, potassium and chloride, J. Cell. Comp. Physiol. 34:493.

    Article  CAS  Google Scholar 

  • Wilson, T., and Hastings, J. W., 1970, Chemical and biological aspects of singlet excited molecular oxygen, Photophysiology 5:49.

    PubMed  CAS  Google Scholar 

  • Woeber, K. A., and Ingbar, S. H., 1973, Metabolism of L-thyroxine by phagocytosing human leukocytes, J. Clin. Invest. 52:1796.

    Article  PubMed  CAS  Google Scholar 

  • Wright, R. C., and Tramer, J., 1958, Factors influencing the activity of cheese starters. The role of milk peroxidase, J. Dairy Res. 25:104.

    Article  CAS  Google Scholar 

  • Yamazaki, I., and Yokota, K-N., 1973, Oxidation states of peroxidase, Mol Cell. Biochem. 2:39.

    Article  PubMed  CAS  Google Scholar 

  • Zatti, M., Rossi, F., and Patriarca, P., 1968, The H2O2-production by polymorphonuclear leucocytes during phagocytosis, Experientia 24:669.

    Article  PubMed  CAS  Google Scholar 

  • Zeldow, B. J., 1959, Studies on the antibacterial activity of human saliva. I. A bactericidin for lactobacilli. J. Dent Res. 38:798.

    Article  PubMed  CAS  Google Scholar 

  • Zeldow, B. J., 1963, Studies on the antibacterial action of human saliva. HI. Cofactor requirements of a Lactobacillus bactericidin, J. Immunol 90:12.

    PubMed  CAS  Google Scholar 

  • Zgliczynski, J. M., and Stelmaszynska, T., 1975, Chlorinating ability of human phagocytosing leucocytes, Eur. J. Biochem. 56:157.

    Article  PubMed  CAS  Google Scholar 

  • Zgliczynski, J. M., and Stelmaszynska, T., 1979, Hydrogen cyanide and cyanogen chloride formation by the myeloperoxidase-H2O2-Cl- system, Biochim. Biophys. Acta 567:309.

    Article  CAS  Google Scholar 

  • Zgliczynski, J. M., Stelmaszynska, T., Ostrowski, W., Naskalski, J., and Sznajd, J., 1968, Myeloperoxidase of human leukemic leucocytes. Oxidation of amino acids in the presence of hydrogen peroxide, Eur. J. Biochem. 4:540.

    Article  PubMed  CAS  Google Scholar 

  • Zgliczynski, J. M., Stelmaszynska, T., Domanski, J., and Ostrowski, W., 1971, Chloramines as intermediates of oxidative reaction of amino acids by myeloperoxidase, Biochim. Biophys. Acta 235:419.

    Article  PubMed  CAS  Google Scholar 

  • Zgliczynski, J. M., Selvaraj, R. J., Paul, B. B., Stelmaszynska, T., Poskitt, P. K. F., and Sbarra, A. J., 1977, Chlorination by the myeloperoxidase-H2O2-Cl- antimicrobial system at add and neutral pH, Proc. Soc. Exp. Biol. Med. 154:418.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Klebanoff, S.J. (1980). Myeloperoxidase-Mediated Cytotoxic Systems. In: Sbarra, A.J., Strauss, R.R. (eds) Biochemistry and Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9134-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9134-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9136-8

  • Online ISBN: 978-1-4615-9134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics