Skip to main content

Science Underlying Radioactive Waste Management: Status and Needs

  • Conference paper
Scientific Basis for Nuclear Waste Management

Abstract

The technical system constitutes a major — but not necessarily determinative — component of the national plan (or system) for radioactive waste management (RWM). This technical RWM system can be conveniently divided into four subsystems: Storage; Radionuclide Immobilization; Isolation and Post Emplacement. It is essential to consider the interactions among these four subsystems in designing any system. Of these, the first and last have not been given much consideration and their role is delineated herein. Of the middle subsystems, up to 1978 the system designers have relied essentially exclusively on the Isolation subsystem (i.e., removal from the biosphere in a mine or seabed, preventing migration of ions, etc.). History has shown that technically this strategy has proved unacceptable. In the last two years the role of the solid waste form and thence the entire radionuclide immobilization subsystem has assumed a much more significant role. Indeed, it will be shown that recent research results give grounds for hope that this subsystem may carry most of the burden of proof of acceptable and verifiable removal of radionuclides from the biosphere. Recent research results which made some of this possible will be discussed, and indications provided where new science is needed in all four subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brooks, “The Public Concern in Radioactive Waste Management,” in “Management of Wastes from the LWR Fuel Cycle,” CONF-76-0701 Energy Research and Development Administration, pp. 52–60 (July 1976).

    Google Scholar 

  2. R. Roy, June 1973, as quoted in J. E. Mendel, J. L. McElroy and A. M. Piatt, “High-Level Radioactive Waste Management Research and Development Program at Battelle Pacific,” Adv. in Chem. Ser. 153, M. H. Campbell, Ed., American Chemical Society, Washington, DC, pp. 106–107 (1976).

    Google Scholar 

  3. H. O. Weeren, “Waste Disposal by Shale Fracturing at ORNL,” Nucl. Eng. and Design 44: 291 (1977).

    Article  CAS  Google Scholar 

  4. N. H. Macmillan and R. G. Naum, “Radiation Effects on Structure of Boron Carbide Containing Neutron Poisons” (submitted for publication).

    Google Scholar 

  5. E. Roedder and H. E. Belkin, “Application of Studies of Fluid Inclusions in Permian Salado Salt, New Mexico, to Problems of Siting the Waste Isolation Pilot Plant” (this volume).

    Google Scholar 

  6. D. B. Stewart and R. W. Potter, “Application of Physical Chemistry of Fluids in Rock Salt at Elevated Temperature and Pressure to Repositories for Radioactive Waste” (this volume).

    Google Scholar 

  7. M. A. Clynne and R. W. Potter, “P-T-X Relations of Anhydrite and Brine and Their Implications for the Suitability of Anhydrite as a Nuclear Waste Repository Medium” (this volume).

    Google Scholar 

  8. D. M. Roy, B. E. Scheetz, E. L. White and M. Daimon, “Borehole Cement and Rock Properties Study-Part A. Borehole Plugging Cement Studies-Annual Progress Report,” 0NWI-5, The Pennsylvania State University, University Park, PA (October 30, 1978 ).

    Google Scholar 

  9. D. M. Roy, M. Daimon, B. E. Scheetz, D. Wolfe-Confer and K. Asaga, “Role of Admixtures in Preparing Dense Cements for Radioactive Waste Isolation” (this volume).

    Google Scholar 

  10. G. J. McCarthy, W. B. White and D. E. Pfoertsch, “Synthesis of Nuclear Waste Monazites, Ideal Actinide Hosts for Geologic Disposal,” Mat. Res. Bull. 13: 1239–1245 (1978).

    Article  CAS  Google Scholar 

  11. G. J. McCarthy and M. T. Davidson, “Ceramic Nuclear Waste Forms: I, Crystal Chemistry and Phase Formation,” Bull. Am. Ceram. Soc. 54: 782 (1975).

    CAS  Google Scholar 

  12. G. J. McCarthy, “High Level Waste Ceramics: Materials Considerations, Process Simulation and Product Characterization,” Nucl. Techno1. 32: 92–105 (1977).

    CAS  Google Scholar 

  13. R. Roy, “Rational Molecular Engineering of Ceramic Materials,” J. Am. Ceram. Soc. 60: 358–359 (1977).

    Google Scholar 

  14. J. M. Rusin, M. F. Browning and G. J. McCarthy, “Development of Multibarrier Nuclear Waste Forms” (this volume).

    Google Scholar 

  15. R. E. Isaacson and L. E. Brownell, “Ultimate Storage of Radioactive Wastes in Terrestrial Environments,” Management of Radio-active Wastes from Fuel Reprocessing, OECD Proceedings, Paris, pp. 953–986 (1972).

    Google Scholar 

  16. S. Forberg and T. Westermark, “Synthetic Rutile Microencapsulation: A Radioactive Waste Solidification System Resulting in an Extremely Stable Product” (this volume).

    Google Scholar 

  17. A. E. Ringwood, “Safe Disposal of Nuclear Reactor Wastes: A New Strategy,” Australian National University Press, Canberra, Australia and Norwalk, CN, 63 pp. (July 1978).

    Google Scholar 

  18. J. N. C. van Geel and H. Eschrich, “New Developments on the Solidification of High Level Radioactive Wastes at Eurochemic,” Trans. Am. Nucl. Soc. 20: 671 (1975).

    Google Scholar 

  19. J. N. C. van Gee1, H. Eschrich and E. J. Detilleux, “Conditioning High Level Radioactive Wastes,” Chem. Engr. Prog., 49–51 (1976).

    Google Scholar 

  20. L. J. Jardine and M. J. Steindler, “Metal Encapsulation of Ceramic Nuclear Waste” (this volume).

    Google Scholar 

  21. W. S. Aaron, T. C. Quinby and E. H. Kobisk, “Cermet High-Level Waste Forms,” ORNL/TM-6404, Oak Ridge National Laboratory, Oak Ridge, TN (June 1978), and “Cermets for High-Level Waste Containment” (this volume).

    Google Scholar 

  22. G. J. McCarthy, “Crystal Chemistry of the Rare Earths in Solidified High Level Nuclear Wastes,” in “Proc. 12th Rare Earth Res. Conf., Vail, CO,” C. E. Lundin, Ed., pp. 665–676 (July 1976).

    Google Scholar 

  23. G. J. McCarthy, “High Level Waste Ceramics,” Trans. Am. Nucl. Soc. 23: 168–169 (1976).

    Google Scholar 

  24. G. J. McCarthy, “Crystal Chemistry and Phase Formation in Developmental Supercalcines,” C00–2510–14, The Pennsylvania State University, University Park, PA, 23 pp. (January 18, 1978 ).

    Google Scholar 

  25. W. Lutze, “Glass and Glass-Ceramic Waste Form Characterization” (this volume).

    Google Scholar 

  26. V. I. Zemlyanukhin, Yu. V. Kuznetsov, L. N. Lazarev, “Clay-Phosphate Ceramics and Vitromets: Alternatives to Monolithic High-Level Waste Glass Products” (this volume).

    Google Scholar 

  27. H. T. Larker, “Hot Isostatic Pressing for the Consolidation and Containment of Radioactive Waste” (this volume).

    Google Scholar 

  28. H. O. Weeren, J. G. Moore and E. W. McDaniel, “Waste Disposal by Shale Fracturing at ORNL” (this volume).

    Google Scholar 

  29. V. I. Spitsyn and V. D. Balukova, “The Scientific Basis for, and Experience With, Underground Storage of Liquid Radioactive Wastes in the U. S. S. R.”(this volume).

    Google Scholar 

  30. C. W. Christenson, et al., “Radioactive Waste Disposal, Part III,” Ceramic Age, 31–44 (August 1964).

    Google Scholar 

  31. J. K. Johnstone, T, J. Headley, P. F. Hlava and F. V. Stohl, “Characterization of a Titanate-Based Ceramic for High Level Nuclear Waste Solidification” (this volume).

    Google Scholar 

  32. J. H. Simmons, P. B. Macedo, A. Barkatt and T. A. Litovitz, “Multiple Barrier Radwaste Encapsulation in High-Silica Glass” (Abstract), Bull. Am. Ceram. Soc. 57: 358 (1978).

    Google Scholar 

  33. National Research Council, Committee on Radioactive Waste Management, Panel on Waste Solidification, “Solidification of High-Level Radioactive Wastes,” National Academy of Sciences, Washington, DC (1978).

    Google Scholar 

  34. G. J. McCarthy, S. Komarneni, B. E. Scheetz and W. B. White, “Hydrothermal Reactivity of Simulated Nuclear Waste Forms and Water-Catalyzed Waste-Rock Interactions” (this volume).

    Google Scholar 

  35. J. H. Westsik and R. P. Turcotte, “Hydrothermal Glass Reactions in Salt Brine” (this volume).

    Google Scholar 

  36. G. J. McCarthy, W. B. White, R. Roy, B. E. Scheetz, S. Komarneni, D. K. Smith and D. M. Roy, “Interactions Between Nuclear Waste and Surrounding Rock,” Nature 273: 217–219 (1978).

    Article  Google Scholar 

  37. E. Mattsson, “Corrosion Resistance of Canisters for Final Disposal of Spent Nuclear Fuel” (this volume).

    Google Scholar 

  38. S. Komarneni and R. Roy, “Tailored Absorptive Mineral Mixtures for Grouts and Overpacks” (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this paper

Cite this paper

Roy, R. (1979). Science Underlying Radioactive Waste Management: Status and Needs. In: McCarthy, G.J., et al. Scientific Basis for Nuclear Waste Management. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9107-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9107-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9109-2

  • Online ISBN: 978-1-4615-9107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics